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Abstract 

 
This contribution reports on the potential and limits of a meshless Lagrangian technique, 

called Smoothed Particle Hydrodynamics (SPH), as a method for acoustic simulation. 

The established techniques for acoustic simulation, such as the Boundary Element 

Method (BEM), Finite Differences Method (FD), and Finite Element Method (FEM), 

draw on mesh-based numerical solution techniques. In spite of steady improvements 

made during the last two decades, these methods continue to have difficulties handling 

inhomogeneous media, capturing aero-acoustic effects or solving applications with 

moving boundaries. The investigation of an SPH meshless approach for modeling sound 

propagation is carried out in order to assess its potential in relation to these difficulties. 

The fluid dynamics SPH formulation used in the simulations, handles compressible and 

viscous fluids and is versatile while straight forward to implement in a parallel and highly 

scalable fashion. Several sequential and parallel computational experiments with 1-D, 2-

D and 3-D models are carried out for the verification of the methodology. The 

contribution concludes with an analysis of the solution sensitivity with respect to SPH 

formulation parameters and a discussion of the challenges associated with enforcing 

boundary conditions. 
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Fig. 1. Illustration of the kernel, , and its support domain, , which is bordered by . The field function at every point (not necessarily at 

a particle) can be approximated by summing up the weighted function values at the positions of the particles in the support domain. For 2-D 

problems the support domain is a circle and for 3-D problems it is a sphere with radius , where  is a constant associated to the kernel and 

 is the smoothing length. 

 

  The derivatives of a field function can be constructed from its values at the particles by using a kernel that is 

differentiable. There is no need to use finite differences or a grid. The approximation for the spatial derivative, 

, is obtained by simply substituting  with  in Eq. (1): 

. (7) 

Using the product rule of differentiation, the divergence theorem and the compact condition it can be shown that 

Eq. (7) can be reduced to the following expression for spatial derivatives of field functions in the domain [21]:  

 . (8) 

The particle approximation for the spatial derivative can then be written as follows: 

. (9) 

That is, the spatial gradient of the field function can be calculated from the field function and the derivatives of the 

smoothing function W, rather than from the derivatives of the field function. 

2.2 SPH formulation for acoustic simulations 

  Acoustic wave propagation can be described with the same equations that are used in fluid dynamics to represent 

the bulk flow of compressible fluid. The SPH formulation proceeds by spatially discretizing the equations of 

continuum mechanics in Lagrangian form: 

1.) Conservation of mass: , (10) 

2.) Conservation of momentum:  , (11) 

3.) Conservation of energy: , (12) 

where  denotes the coordinate direction and  indicates repeated spatial indices. Furthermore,  stands for density, 

 for velocity,  for stress,  for internal energy and  for body forces. For Newtonian fluids, the total stress 

tensor, , consists of the isotropic pressure, , and the viscous stress  (  denotes a delta-function,  for 

 and  otherwise): 
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 . (13) 

  Equations (10) through (13) are not sufficient to completely pose the acoustic problem. A closure relationship 

given by the equation of state and relating the hydrostatic pressure to the local density and internal energy is 

needed. One advantage of the SPH approach is that the equation of state can be as complicated as desired. For all 

simulations herein the ideal gas law is used with no prior linearization. Applying a SPH spatial discretization of the 

above equations leads to a set of ordinary differential equations (ODEs) that are subsequently solved via numerical 

time integration. The general SPH formalism for fluid dynamics can be augmented with artificial viscosity and heat 

for shock problems [21]. Due to the small pressure and velocity gradients present in the numerical experiments of 

section 3, artificial viscosity is irrelevant and thus always set to zero.  

  The implementation draws on symmetrized versions of equation (9) because it was shown that they are 

numerically advantageous [22]. Details about the specific equations used in the implementation are provided in 

[23]. 

2.3 Implementation 

  Common to all SPH implementations is a search algorithm that at each time step finds the interaction partners of 

each SPH particle. This step, called nearest neighbor search, is necessary because the derivative of a field function 

is determined based on the field function values of neighboring particles as discussed in section 2.1. An efficient  

and highly parallelizable method for the nearest neighbor search, called spatial subdivision [24], is employed 

herein. After field function ODE’s have been determined using the SPH discretization, a leap frog integration 

algorithm is used to simulate the time evolution of all particles [25]. The basic SPH simulation loop is illustrated in 

Fig. 2. 

 

 

Fig. 2. Basic SPH simulation loop: after a spatial discretization that draws on a nearest neighbor search, the PDE problem becomes an ODE 

problem which is integrated with a leapfrog method. 

 

  The SPH formalism for acoustic problems was coded in two different implementations. The first was a serial 

implementation in MATLAB. The second was a parallel C++ implementation that leveraged the computational 

power of the Graphics Processing Unit (GPU) and drew on NVIDIA’s Compute Unified Device Architecture 

(CUDA) application programming interface [26]. The GPU implementation was motivated by the fact that, for each 

time step, the MATLAB code required close to  seconds on a modern desktop PC to simulate a problem that used 

 SPH particles whereas three-dimensional simulations with good resolution typically lead to discretizations 

using one million SPH particles or more. Given that all computationally intensive parts of the SPH algorithm are 

highly parallelizable, the GPU implementation resulted in a relative speedup of  in comparison to the 

MATLAB program. The GPU used for the simulations was a NVIDIA GeForce 8800 GTX with  of 

global memory and  steam processors each working at a clock rate of . The memory constraint 

placed a  million SPH particles limit on the size of the problems analyzed. Both implementations have been 

validated using classic hydrodynamics benchmark tests. 
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3. Numerical experiments 

  The reported numerical experiments are as follows. Section 3.1 will demonstrate that the SPH formalism is 

capable to model sound propagation accurately. The sensitivity of the SPH formulation with respect to its 

smoothing length is analyzed using a set of one-dimensional simulations in section 3.2. A 3-D problem is analyzed 

in section 3.3 to point out the challenges associated with enforcing boundary conditions in acoustic SPH simulation. 

A brief efficiency study; i.e., precision versus effort analysis, is summarized in section 3.4. 

3.1 Two-dimensional sound propagation 

  The first numerical experiment demonstrates that SPH is capable of simulating sound wave propagation 

accurately without bulk flow effects. To this end, a simulation with  particles is set up inside a square 

domain. An initial velocity profile is imposed on the particles to create a pressure field whose time evolution needs 

to be traced. In order to create sound waves with very small pressure amplitudes, the magnitude of the velocity is 

low. The amplitude needs to be small in order to stay in the linear regime. Otherwise, the nonlinear SPH model 

would lead to different results than the reference solution, the latter obtained by solving the linear wave equation. 

The velocity excitation function consists of two Gaussian distributions in  and  that are multiplied with each 

other to create a symmetric pulse in the middle of the domain. The Cartesian components of the initial velocity 

excitation are given by the following equation:    

 . (14) 

In the SPH model the ratio of specific heats is  and initial values for density and specific internal energy are 

set to  and  respectively. According to the equation of state for ideal gas [21, 23], 

, this leads to standard atmospheric pressure of . The theoretical wave speed in the 

ideal gas under these conditions can be calculated with respect to the internal energy: 

 . (15) 

Artificial viscosity is set to zero in order to ensure that viscosity effects have no influence on the results of the 

simulation. The particles are set up on a quadratic grid with equal particle spacing and no random component. 

Otherwise the high noise level resulting from particle disorder needs to be damped in a preprocessing step where 

the particles can find their equilibrium positions. The positions of the particles in the three outer rows that frame the 

domain are fixed in order to prevent the inner particles form dispersing. This is not exactly equivalent to a zero flux 

boundary condition because the fixed particles in the walls are compressible. Nonetheless, it is the easiest way of 

creating a boundary that prevents dispersion. The geometry and all simulation parameters are given in Table 1: 

 

Table 1. Model parameters and geometry for the simulation of two-dimensional sound propagation. 

Artificial viscosity parameters [27]: 

   

equation of state:  

   

smoothing length:  
smoothing kernel: cubic spline 

time step size: 
 

number of particles:   

particle mass:   

particle spacing:  

width and depth of the gas square:  

 

  The reference solution was obtained by a MATLAB FDTD code with MacCormack time integration [28]. Both 

simulations, SPH and FDTD, have the same spatial resolution and numerical integration step size. Zero flow 
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boundary conditions are employed for the outer rows of FD cells to model rigid walls that bound the domain. This 

mimics the boundaries in the SPH simulation as close as possible. Since the wave speed in the SPH simulation 

turned out to be slightly higher than the theoretical value in Eq. (15), the wave speed of the FDTD simulation is set 

to  in order to create better comparable results. The deviation from the theoretical value of  is 

, an aspect discussed in section 3.2. 

  Fig. 3 compares the solutions obtained by FDTD and SPH through a series of plots visualizing the spatial 

pressure distribution at different time instances. The slightly adapted wave speed for the FDTD simulation leads to 

a good agreement of the plots. SPH models the pressure wave propagation accurately yet small shape and amplitude 

differences can be noticed. One source causing these shape differences is the grid-like structure of the particle 

distribution, which leads to anisotropic behavior. Further amplitude differences can be traced back to the excitation-

induced bulk flow, which was taken into account in the SPH but not in the FDTD simulation. However, given the 

very short simulation time involved, these are second order effects since no considerable amount of bulk flow can 

build up. Another result of the simulation is that the fixed boundary particles employed in the SPH simulation 

model the rigid walls fairly well. This conclusion can be drawn because the time evolution of the pressure field 

stays similar to the reference solution after the waves got reflected at the walls. 

 

 
Fig. 3. Pressure distribution for the simulation of two-dimensional sound propagation. Plots (a) to (d) are calculated via FDTD and (e) to (h) 

via SPH. The pressure distributions are given for the following time steps:  (a) and (e),  (b) and (f),  (c) and (g), 

 (d) and (h). 
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3.2 Sensitivity of the solution with respect to SPH formulation parameters 

  In classical CFD, it has been shown that the shape of the smoothing kernel and the smoothing length crucially 

influence the accuracy of SPH simulation results [29]. A sensitivity analysis study is set up to investigate the effect 

of different smoothing lengths on the accuracy of SPH 1-D simulations in acoustics. To this end,  SPH particles 

are equally spaced along a line. At the beginning of the simulation all particles are at rest and under standard 

pressure. So called mirror boundary particles prevent the gas particles from dispersing at both ends. They are 

created outside the domain at each time step to mirror the properties of real particles, yet with one caveat: they have 

opposite velocity. In this way a symmetry axis is created that is used to define the boundary condition. A classical 

boundary and initial value problem for the wave equation is chosen so that an analytical solution can be determined: 

 (16) 

 

. 

Subscripts indicate derivatives with respect to time, , or space, , while  is a unit step function at the origin. The 

particles are excited from the left through a constant velocity excitation, , that starts at time . The exact 

solution for the pressure is [30]: 

 . (17) 

This is a step function with height  starting at  and traveling towards the right end of the 

domain. The high pressure of the step function is defined as  and  denotes mean pressure. The chosen 

problem has the advantage that the wave speed can be calculated indirectly using the pressure level of the step 

function, , which can be determined by averaging the pressure values of the first ten SPH particles: 

. (18) 

All parameters used in the simulation are given in Table 2. The simulation results are reported at , which 

ensures that the step function has enough time to travel into the domain. In order to gauge the sensitivity of the SPH 

formulation to the smoothing length, a set of  simulations was carried out with different smoothing lengths 

between one and five times the particle spacing. Fig. 4 shows the pressure profiles of the simulations at  

for three smoothing lengths: , and . 

 

Table 2. Model parameters and geometry for the set of one-dimensional simulations. 

Artificial viscosity parameters [27]: 
   

equation of state:  

   

smoothing lengths:  
smoothing kernel: cubic spline 

time step size: 
 

number of particles:   

particle mass:   

particle spacing:  

length of the “gas pipe”:  

velocity excitation  
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Fig. 4. Pressure profiles after  calculated with different smoothing lengths, (a): , (b): , (c): . 

The smoothing length affects both wave propagation speed and approximation quality.  

 

The sound pressure plot (a) for smoothing length equal  shows the best agreement with the analytical 

solution. A smoothing length of  results in decreased wave speed and thus in an over estimated pressure 

level (see plot (b)). While the sound speed in plot (c) is only slightly higher than in the analytical solution, the 

approximation quality begins to suffer due to the long smoothing length. The relative wave velocity error in each of 

the  simulations is calculated according to Eq. (18) and plotted over the relative smoothing length as shown in 

Fig. 5. 

 

Fig. 5. Relative wave speed error for all 41 SPH simulations plotted over the relative smoothing length. Convergence of the SPH wave speed 

to the theoretical speed of sound can be observed with growing smoothing length. 

 

The correlation shown in Fig. 5 aggregates results obtained in the 41 1-D SPH simulations described above, each of 

which having been carried out with equal particle spacing, , and a cubic spline kernel. It indeed confirms results 

obtained in other application fields [29], that suggest that results are significantly more accurate if the smoothing 

length, , is equal to integer multiples of  and least accurate with . The dependency of the propagation 

speed on the smoothing length explains the deviations observed in section 3.1. In 2-D simulations with grid-like 

particle positioning, the wave speed is expected to vary slightly with the orientation relative to the grid. This 

explains the small shape differences in the previous 2-D experiment. According to the experiment above, in 

simulations with disordered particles the wave speed can show significant local changes. However, the lower and 

higher local wave speeds average out provided the discretization is sufficiently fine. Another trend is noticeable in 

Fig. 4. While the propagation speed becomes more robust for higher smoothing lengths, the approximation quality 

of the SPH simulation decreases. Due to the mathematic formulation underlying the SPH scheme, high smoothing 

lengths tend to filter out high frequency components of the signal and introduce numerical dispersion. Nonetheless 
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a comparison to a 1-D FDTD simulation of the same experiment and with the same discretization shows that SPH 

results calculated with low smoothing length can lead to superior accuracy (see Fig. 6). 

 

 

Fig. 6. Accuracy comparison between a properly tuned SPH simulation, (a), and FDTD with the same resolution, (b). For this smoothing 

length, which is equal to the particle spacing, SPH leads to better approximation quality than FDTD. 

3.3 Sound excitation and propagation in a three dimensional tube 

  In order to investigate both 3-D sound propagation and sound excitation due to moving boundaries, a 3D tube 

experiment similar in nature to the 1-D experiment of section 3.2 was considered. Fig. 7 illustrates the geometry of 

this experiment and the coordinate system used. 

 

 
Fig. 7. Geometry and coordinate axis of the tube. It has a quadratic cross section and is filled with ideal gas. 

 

  The piston at the left end of the tube moves with a constant velocity leading to a problem similar to the one 

described in Eq. (16). Unlike in section 3.2, the experiment here tackles the analysis in 3-D, which significantly 

complicates the issue of enforcing boundary conditions. Problems arise from the so called “particle deficiency” 

outside the boundaries that leads in Eq. (9) to an erroneous particle approximation of the domain integrals. It is well 

documented that enforcing boundary conditions poses significant challenges in fluid dynamics SPH simulations 

[21], which is a general trait of mesh-free methods [31]. Various approaches to enforcing boundary conditions have 

been proposed for other SPH applications. A simple and widely used first approach is to specify repulsive forces 

that prevent particles from penetrating boundaries [22]. Tests with this boundary formulation indicate that they are 

not well suited for acoustic simulations [23]. High disturbances, due to unbalanced fluid and boundary forces in the 

initial configuration, need to be damped out before a reasonable simulation can start. However, the pressure 

distribution after the first step is very inhomogeneous. High pressure peaks remain after the kinetic energy has been 

dissipated from the system. Attempts to obtain a homogeneous initial pressure distribution did not lead to promising 

results. A second boundary formulation [32] based on boundary integrals suffers from the same problem. As seen in 

section 3.1 the simplest way to enforce boundaries is given by a layer of fixed particles along boundaries. However, 

if fluid particles move tangentially with respect to the boundary layer, the changing distances between boundary 

and fluid particles cause noisy simulation results. The use of mirror particles like in section 3.2 has the potential to 
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improve this problem because the zero-flux boundary conditions can be represented exactly. However, initial trials 

for this 3-D simulation revealed a problem related to particle deficiency. Specifically, void areas exist at the edges 

of the tube where no mirror particles are created, which indicates that particle deficiency is only partially avoided. 

Thus, curved surfaces and edges cannot be modeled accurately with this technique. However, for this specific 

simulation the voids can be filled with fixed boundary particles. The results obtained with this third approach to 

enforcing boundary conditions are slightly less noisy than the results obtained only with fixed boundary particles. 

Parameters employed in this simulation are given in Table 3 and the pressure profile on a horizontal level at  

is provided in Fig. 8. 

 

Table 3. Model parameters and geometry for the simulation of three-dimensional sound propagation and excitation in a tube. 

Artificial viscosity parameters [27]: 
   

equation of state [23]:  

   

smoothing length:  
smoothing kernel: cubic spline 

time step size: 
 

number of particles:   

particle mass:   

particle spacing:  

geometry of the tube:  

velocity excitation  
 

 

 

 
Fig. 8. Pressure distribution on a horizontal level at  for the simulation of 3-D sound propagation and excitation in a tube. The pressure 

distributions are given for the following time steps:  (a),  (b),  (c),  (d). The last two plots show the 

wave travelling to the left after reflection at the fixed end of the tube. 

 

  Similar to the experiment demonstrated in section 3.2, a discontinuity with a constant level is expected to 

propagate through the tube doubling its height when reflected by the right end of the tube. It can be shown that the 

pressure level is reproduced with good accuracy, meaning that sound excitation due to the piston motion is modeled 

correctly. However, it can also be noticed that, along with dispersion phenomena known from section 3.2, the noise 

level introduced by the boundary formulation is high and accumulates over time. 
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3.4 Accuracy and computational efficiency 

  A set of simple 3-D SPH acoustic simulations [23] with different resolutions was run and found to converge 

with second order accuracy. This agrees with theoretical as well as similar numerical results reported in literature 

for other application fields [20]. The time stepping for each SPH simulation needs to be adjusted according to the 

Courant-Friedrichs-Lewy condition [23, 33]. For this set of simulations, required computation times were recorded 

and illustrated in Fig. 9. It can be seen that the highly parallel GPU implementation, described in section 2.3, scales 

linearly with the number of SPH particles. The parallel implementation leads to high computational efficiency even 

for problems that require a large number of particles. 

  

 
Fig. 9. Computing time for one simulation step, plotted over the number of SPH particles in the simulation (  

  and  particles). Calculation times are recorded for the NVIDIA GeForce 8800 GTX GPU. 

4. Conclusion 

  Meshless Lagrangian methods represent an attractive alternative for acoustic simulations in several cases in 

which traditional mesh-based solution methods have significant difficulties: aero-acoustical problems, complex and 

changing domain topologies, domains with multiple propagation media, domains with complex temperature or 

density gradients, nonlinear acoustics and shock waves with fluid-structure interaction. The numerical experiments 

conducted in this study confirm that it is possible to simulate sound wave propagation using SPH. The results 

obtained are in agreement with the solution of the linear wave equation calculated using an FDTD scheme. The 

SPH methodology was shown to lead to results that are sensitive to the smoothing length considered in the 

numerical solution. Specifically, overly long smoothing lengths led to high levels of numerical dispersion and 

therefore numerical solution inaccuracies. Three dimensional simulations revealed that difficulties in enforcing 

boundary conditions represent the main drawback of acoustic SPH simulations. Using a combination of two 

techniques for enforcing boundary conditions, a fixed boundary particle and a mirror particle approach, sound wave 

excitation due to moving boundaries has been simulated in agreement with the analytical solution. Moreover, 

pressure wave reflection at rigid walls was reproduced accurately. However, the high level of noise caused by 

moving boundaries when modeled using the two techniques mentioned, constitutes a barrier that needs to be 

addressed before SPH can be adopted for every day acoustic simulations. Drawing on a GPU-based SPH 

implementation, the solution of 3-D problems was shown to scale linearly with the number of particles, and could 

be obtained efficiently using commodity parallel computing hardware.  

  In terms of open problems and future work, the most pressing issue remains that of enforcing boundary 

conditions in an accurate and general fashion. In this context it has been reported that a corrective SPH formulation, 

called CSPH, reduces disturbances near boundaries drastically [21]. Since SPH is based on conservation laws and 

constitutive relations that do not have to be linearized, it should be able to capture nonlinear effects but further work 
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needs to be done to validate the method for nonlinear wave propagation. Finally, another relevant application that 

remains to be investigated in conjunction with SPH is that of sound propagation through inhomogeneous media. 
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