Technical Report 2014-02

Performance Analysis of CULA on different NVIDIA GPU
Architectures

Prateek Gupta

May 20, 2014

1 Spring 2014: Performance Analysis of CULA on diéfier NVIDIA GPU Architectures

Table of Contents:

1.

Introduction

Primary Objective
Motivation
Background
Overview

CULA libraries

Performance Analysis Framework

a.
b.
c.

Programming considerations
Analysis Structure and Framework Functions
Configuring the Environment

CULA Dense Functionalities

b.
c.

d.
e.

Benchmarking CULA R17 vs Intel MKL
Benchmarking CULA R18 vs Intel MKL
Implementation of GESV

Implementation of GETRF
Implementation of GBTRF

Analysis and Results

a.
b.

Timing scaling analysis
Flop rate Performance scaling analysis

Conclusion
References

2

Spring 2014: Performance Analysis of CULA on diéfiet NVIDIA GPU Architectures

Introduction :

Primary Objective: The objective is to undertake an in-depth studyth® FLOP rate
performance analysis and timing scaling analysighefCULA Dense R17 (with CUDA 5.5)
functionalities: (i) GESV (ii) GETRF (iii) GBTRF odifferent NVIDIA CUDA-enabled GPU
architectures: (i) NVIDIA Tesla C2050, (ii)) NVIDI&eForce GTX 680 (iii) NVIDIA Tesla
K40C. The functionalities are implemented using GUrogramming and CULA framework
functions for both single precision and double fgieo.

Motivation: The CULA is a GPU accelerated linear algebrealip that utilizes the NVIDIA
CUDA parallel computing architecture to dramatigalinprove the computation speed of
sophisticated mathematics. CULA is an implementatidd the Linear Algebra PACKage
(LAPACK) interface for CUDA enabled NVIDIA GPU. EBhCULA is a next generation
linear algebra package that uses the GPU as aoccegsor to achieve speedups over existing
linear algebra packages. As there is no matrixrsige operation in CUBLAS, we have to
ask help from CULA. It is built oNVIDIA CUDA andNVIDIA CUBLAS and uses the
Intel® Math Kernel Library (MKL) internally. The performance and actual speed tips o
CULA depends heavily on the algorithm and the sifethe data set. Additionally, the
performance also varies with the GPU memory avkildbr performing the computation,
which varies with different flavors of NVIDIA GPUatds as claimed by the CULA experts in
one of their blogs (). This feature can be potdéigtiexplored by using the device interface
model of CULA. So, the performance analysis in i GFLOPS can be done on Fermi,
Tesla as well as Kepler Architectures. This stugdyriportant as it will reflect the advantages
of using a particular architecture for getting opied performance for o8pike GPU solver
[4,5]. For example, the performance of the firsplee card, GeForce GTX 680 which has a
downside that it has comparatively low performamaembers for double precision as
compared to other traditional chips but has verydgsingle precision performance. So, many
other such interesting features will come out ipiely when CULA will be ported onto these
architectures.

The study stresses on finding the GFLOP performaridiree different memory intensive
linear algebra CULA Dense functionalities with higagree of usage in different algorithms
on different types of NVIDIA GPU architectures likermi and Kepler.

Background: The primary reference of this study is [1]. CUIsAstandard Dense edition
implements a much larger set of functions from LARAas shown in Table 1. Building from
the information presented, this study does a FL&® performance analysis of compute /
memory intensive linear algebra functionalities. this study, the code is then further
optimized by pinning the host memory and the FLQ@Ee ranalysis after optimization is
presented. This optimization tries to mitigate fherformance overhead in data transfer
between the host and device.
Independent Study Overview This study exercises different linear algebracfions in
single and double precision. The performance aigmlydgll involve running different
applications on CULA dense R17 and CUDA 5.5 onaléht NVIDIA GPU cards with
different architectural specifications as showiTablel, which are as follows:

Dense General Matrix Solve (using LU decompositi®(}pESV, SGESV

Dense General Matrix triangular factorization- SGET DGETRF

Dense Banded Matrix Triangular factorization- SGBTRGBTRF

The number of floating point operations for factation and solving is 0.67 times’ lind 2
times N respectively.

Spring 2014: Performance Analysis of CULA on diéfiet NVIDIA GPU Architectures

Tablel: Architectural Specifications of Tesla C2050GeForce GTX680, Tesla K40C

S.No. Features Tesla C2050 GeForce GTX680 | Tesla K40C
(Fermi (Kepler (Kepler
Architecture) Architecture) Architecture)
CUDA cores/ (SMs/SMXs) 448/14 1536/8 2880/15
2 Memory 3072 MB 2048 MB 12288 MB
(GDDR5) (GDDR5) (GDDR5)
Fab (nm)/Code Name 40/ GF 100 28/ GK 104 28/ GeBL
4 Peak GFLOPS (FMA-Double 515.2 3090.43 1430
precision)
5 Core Configuration (Unified | 448:56:48 1536:128:32 2880:240:48
shaders: Texture Mapping
units: Render output units)
6 Bandwidth (GB/s) 144 192.2 288
V. CULA Libraries: CULA has two libraries as follows:-
l. CULA Dense: A GPU-accelerated implementation ofsdelmear algebra routines.
Following are the linear equation functionalitiegpported by CULA Dense:
Matrix Type | Operatiol S C D Z
General Factorize and solve SGESV CGESV DGESV ZGESV
Factorize and solve
with iterative DSGESV | ZCGESV
refinement
LU factorization
Solve using LU| SGETRF | CGETRF | DGETRF | ZGETRF
factorization
Invert using LU|SGETRS | CGETRS | DGETRS | ZGETRS
factorization
SGETRI | CGETRI | DGETRI | ZGETRI
Positive Factorize and soh | SPOS\ CPOS\ DPOS\V ZPOSV
Definite Cholesky
Factorization SPOTRF | CPOTRF | DPOTRF | ZPOTRF
Triangular Invert triangulay STRTRI | CTRTRI | DTRTRI | ZTRTRI
matrix
Solve triangular| STRTRS | CTRTRS | DTRTRS | ZTRTRS
system
Banded LU factorization SGBTRH CGBTRF DGBTRF ZGBTR
Positive Cholesky SPBTRF | CPBTRF | DPBTRF | ZPBTRF
Definite factorization
Banded
4 Spring 2014: Performance Analysis of CULA on diéfiet NVIDIA GPU Architectures

Il. CULA Sparse: A GPU-accelerated library for linelgyedra that provides iterative solvers
for sparse systems. Since, in this study, the facos CULA Dense linear functionalities
so, CULA Sparse functionalities are not discusseé.h

Il. Performance Analysis Framework
I. Programming Considerations
Matrix Storage: When providing data to CULA routines, it is inmfant to consider that
the data is stored in column-major order in memdplumn-major ordering is the
opposite of the row-major ordering because elemehthe matrix are instead stored by
column, rather than by row. In this storage schestements of a column are contiguous
in memory, while elements of a row are not.

- - —

i
|
'
|
l
- '

i
I
1
I
I
Il
I
L

Figurel: A column-major ordered matrix. Elements are stanegiemory in the order shown by the arrow.

Performing a transpose on the row-major data waitivert it to column-major and vice-

versa. For column-major data, the leading dimen#ierleading dimension is equal to the
height of a column, or equivalently, the numbera#s in the matrix. This is the height

of the matrix as allocated and may be larger thamtatrix used in the computation.

Performance Optimization: CULA is specifically designed to leverage the maslsi
parallel computational resources of the GPU, witpagticular focus on large problems
whose execution on a standard CPU is too time coimgy

Problem Size-As a general rule, applying CULA for larger probkemwill
maximize performance gains with respect to othenpaational linear algebra
packages [2]. The maximum problem size is conghiny the data type in use
and the maximum GPU memory. For example, the maxiraize for a problem
that uses double-precision complex data is roughky fourth of the maximum
problem size of a single-precision problem for $hene matrix dimensions, since
the size of these data types differ by a factdioaf. This can also be seen in the
‘Results and Analysis’ section of this report.

Accuracy Requirements- CULA offers both single and double-precision
floating point support for its included routineshié¢ the latest NVIDIA GPU
hardware offers support for both of these data sypeshould be noted that
current NVIDIA GPU hardware performs best when afiag on single-
precision data [2] i.e. additional performance d¢mn achieved at the cost of
accuracy through the use of single-precision restin

Device Interface: The Device interface follows the standards sethfam the

NVIDIA CUBLAS package. In this interface, it is ngiged to allocate and
populate GPU memory and then call CULA functions dperate on that
memory. Memory allocation is handled wadaMalloc andcudaFree available

in the CUDA toolkit. While using pitched memory, i our responsibility to
ensure that their allocations are appropriate.

5 Spring 2014: Performance Analysis of CULA on diéfier NVIDIA GPU Architectures

CULA’s standard Dense version provides specialiabdcation functions that
pitch data to the optimal size for CULA. These fiowes are
culaDeviceMalloc() and culaDeviceFree() found in thecula_device.hheader
of CULA Dense.

Leading Dimension: All LAPACK matrices are specified as a pointer and
“leading dimension” parameter. The leading dimemsiescribes the allocated
size of the matrix, which may be equal to or lartpan the actual matrix height.
Thus if a matrix input is described as size “(LDW)" it simply means that the
storage for the matrix is at least LDA x N in siZéwe section of that array that

contains valid data will be described by other paeters, often M and N.

Analysis Structure and Framework Functions:

Framework Functic

Meaning

culalnitialize(

Initializes CULA; must be called before using an
other function. Some functions have an exceptio
to this rule like culaGetDeviceCount(),

culaSelectDevice(), and version query functions.

=)

culaShutdowni

Shuts down CUL,

culaGetStatusString

Associates iculaStatus enum with a readable e
string

culaGetStatusAsString

Returns the culaStatus name as a s

culaGetErrorinfo(

This function is used to provide extenc
functionality that LAPACK'’s info parameter
typically provides

culaGetErrorinfoString

Associates a culaStatus and culalnfo wi
readable error strit

culaFreeBuffer

Releases any memory buffers stored internall
CULA

culaGetVersio

Reports the version number of CU

Framework Functic

Meaning

culaGetCudaMiimumVersior

Reports the CUDA_VERSION that the running
version of CULA was compiled against, which

indicates the minimum

version of CUDA that is required to use this lity

culaGetCudaRuntimeVersiol

Reports the version of the CUDA runtime that
operating system linked against when the progrg
was loaded.

m

culaGetCudabDriverVersior

Reports the version of the CUDA driver instal
on the syster

culaGetCublasMinimumVersior

Reports the CUBLAS_VERSION that the runn
version of CULA was compiled against, which
indicates the minimum

version of CUBLAS that is required to use this
library.

culaGetCublasRuntimeVersio

Reports the version of the CUBLAS runtime t
operating system linked against when the progrg
was loadec

m

culaGetDeviceCoun

Reports the number of GPU devices Can be c:
before culalnitialize(

culaGetExecutingDevice

Reports the id of the GPU device executing CL

culaGetDevicelnfor

Prints information to a buffer about a specif
device

culaGetOptimalPitch

Calculates a pitch that is optimal for CULA wh
using the device interfac

culaDeviceMalloc(

Allocates memory on the device in a pitch the
optimal for CULA

culaDeviceFree

Frees memory that has been allocated
culaDeviceMalloc

Spring 2014: Performance Analysis of CULA orfefiént NVIDIA GPU Architectures

Configuring the Environment:

The first step in this process is to set up envirent variables so that your build scripts
can infer the location of CULA. Add the followingnés to the .bashrc:

export CULA_ROOT=/ustr/local/cula

export CULA_INC_PATH=$CULA_ROOT/include

export CULA_LIB_PATH_32=$CULA_ROOT/lib

export CULA_LIB_PATH_64=$CULA_ROOT/lib64

(where CULA_ROOT is customized to the location veh€ULA is installed)

After setting environment variables, CULA can baltboy configuring the build scripts
(module load culadensgpand by using makefile.

1. CULA Dense Functionalities

Benchmarking CULA R17 vs Intel MKL on Euler99 (Tesla K40C):
[pkgupta3@euler99 benchmark]$./benchmark

Initializing CULA....

Initializing MKL...

Benchmarking the following functions:

SGEQRF
SGETRF
SGELS
SGGLSE
SGESV
SGESVD
SSYEV
DGEQRF
DGETRF
DGELS
DGGLSE
DGESV
DGESVD
DSYEV

-- SGEQRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.19 0.31 1.6012

5120 0.28 0.55 1.9577

6144 0.43 0.92 2.1636

7168 0.61 142 2.3283

8192 0.83 2.18 2.6264

-- SGETRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.12 0.16 1.2944

5120 0.19 0.28 1.4750

6144 0.27 0.48 1.7634

7168 0.39 0.72 1.8318

8192 0.53 1.10 2.0923

Spring 2014: Performance Analysis of CULA orfefiént NVIDIA GPU Architectures

-- SGELS Benchmark --

Size CULA (s)

MKL (s) Speedup

4096 0.28 0.35 1.2325
5120 0.43 0.62 1.4481
6144 0.63 1.02 1.6208
7168 0.88 156 1.7674
8192 1.17 2.26 1.9336

-- SGGLSE Benchmark --

Size CULA (s)

MKL (s) Speedup

4096 0.31 155 5.0503
5120 0.48 2.51 5.2651
6144 0.69 3.74 5.4573
7168 0.94 5.25 5.6026
8192 1.24 7.16 5.7733

-- SGESV Benchmark --

Size CULA (s)

MKL (s) Speedup

4096 0.13 0.16 1.2737
5120 0.20 0.28 1.4250
6144 0.29 049 1.7278
7168 0.41 0.74 1.7983
8192 0.55 1.11 2.0338

-- SGESVD Benchmark --

Size CULA (s)

MKL (s) Speedup

4096 16.80 26.05 1.5508
5120 27.29 43.68 1.6005
6144 41.12 67.82 1.6491
7168 58.05 113.88 1.9619
8192 77.90 171.80 2.2053

-- SSYEV Benchmark --

Size CULA (s)

MKL (s) Speedup

4096 1.70 1.36 0.7978
5120 2.67 2.48 0.9272
6144 3.97 5.02 1.2641
7168 5.62 7.21 1.2819
8192 7.51 10.02 1.3341

Spring 2014: Performance Analysis of CULA orfefiént NVIDIA GPU Architectures

-- DGEQRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.36 0.68 1.9019

5120 0.49 1.06 2.1727

6144 0.74 1.86 2.5284

7168 1.05 2.74 2.6026
8192 1.48 4.85 3.2855

-- DGETRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.20 0.34 1.6807

5120 0.33 0.55 1.6416

6144 0.47 1.03 2.1835

7168 0.67 142 2.1193

8192 0.92 3.00 3.2454

-- DGELS Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.49 0.64 1.3119

5120 0.76 1.14 1.4957

6144 111 191 1.7229

7168 1.52 2.92 1.9233

8192 2.07 4.23 2.0479

-- DGGLSE Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.53 3.27 6.1585

5120 0.79 5.07 6.4347

6144 1.15 7.76 _6.7629

7168 157 10.70 6.7944

8192 2.13 1531 7.2020

-- DGESV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.21 0.36 1.7184

5120 0.33 0.56 1.6830

6144 0.49 0.97 1.9805

7168 0.69 1.43 2.0786

8192 0.96 2.97 3.0903

Spring 2014: Performance Analysis of CULA orfefiént NVIDIA GPU Architectures

-- DGESVD Benchmark --

Size CULA (s) MKL (s) Speedup

4096 22.10 31.46 1.4231
5120 37.80 54.24 1.4352
6144 58.44 90.94 1.5561
7168 86.54 142.55 1.6471
8192 122.94 241.05 1.9607

-- DSYEV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 2.54 349 1.3715
5120 3.92 5.33 1.3602
6144 5.79 8.27 1.4278
7168 7.87 11.29 1.4341
8192 10.60 19.00 1.7922
8193
I. Benchmarking CULA R18 vs Intel MKL on Euler99 (Tesla K40C)
[pkgupta3@euler99 benchmark]$./benchmark
Initializing CULA....
Initializing MKL...

Benchmarking the following functions:

SGEQRF
SGETRF
SGELS
SGGLSE
SGESV
SGESVD
SSYEV
DGEQRF
DGETRF
DGELS
DGGLSE
DGESV
DGESVD
DSYEV

-- SGEQRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.22 0.37 1.6909
5120 0.30 0.69 2.3298
6144 0.44 1.20 2.7126
7168 0.63 1.73 2.7554
8192 0.85 2.82 3.3281

Spring 2014: Performance Analysis of CULA offiestent NVIDIA GPU Architectures

-- SGETRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.12 0.23 1.9259

5120 0.19 0.43 2.2097

6144 0.27 0.81 2.9622

7168 0.40 1.05 2.6517

8192 0.52 1.35 2.6126

-- SGELS Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.29 0.53 1.8400

5120 0.43 0.62 1.4372

6144 0.63 1.03 1.6335

7168 0.88 156 1.7679

8192 1.17 2.26 1.9355

-- SGGLSE Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.32 155 4.8889

5120 0.48 251 5.1851

6144 0.68 3.77 5.5439

7168 0.93 5.25 5.6481

8192 1.23 7.18 5.8427

-- SGESV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.12 0.16 1.2847

5120 0.19 0.29 1.4710

6144 0.28 0.50 1.7773

7168 0.39 0.73 1.8581

8192 0.53 1.15 2.1701

-- SGESVD Benchmark --

Size CULA (s) MKL (s) Speedup

4096 16.89 25.82 1.5289

5120 27.64 44.77 1.6196

6144 4147 68.58 1.6535

7168 58.70 117.67 2.0046

8192 78.55 177.53 2.2600

Spring 2014: Performance Analysis of CULA offiestent NVIDIA GPU Architectures

-- SSYEV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 1.65 1.42 0.8588
5120 2.68 249 0.9283
6144 4.08 5.06 1.2392
7168 5.41 6.97 1.2889
8192 740 10.10 1.3662

-- DGEQRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.28 0.69 2.5060
5120 0.46 1.05 2.2844
6144 0.71 1.89 2.6695
7168 1.02 3.30 3.2179
8192 1.44 4.86 3.3690

-- DGETRF Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.20 0.34 1.7257
5120 0.32 0.55 1.7093
6144 0.49 1.07 2.2083
7168 0.67 1.45 2.1595
8192 0.94 3.04 3.2488

-- DGELS Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.45 0.65 1.4478
5120 0.71 1.15 1.6165
6144 1.06 1.90 1.7986
7168 1.46 2.93 2.0061
8192 2.02 4.23 2.0962

-- DGGLSE Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.47 3.30 7.0021
5120 0.74 5.13 6.9317
6144 1.09 7.69 7.0707
7168 151 10.67 7.0741
8192 2.05 15.26 7.4448

Spring 2014: Performance Analysis of CULA offedlent NVIDIA GPU Architectures

-- DGESV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 0.20 0.34 1.6483
5120 0.34 0.56 1.6341
6144 0.48 1.08 2.2549
7168 0.68 1.46 2.1433
8192 0.94 3.09 3.2924

-- DGESVD Benchmark --

Size CULA (s) MKL (s) Speedup

4096 2223 31.35 1.4104
5120 38.00 54.18 1.4257
6144 58.57 91.00 1.5537
7168 86.57 142.19 1.6425
8192 12297 241.61 1.9649

-- DSYEV Benchmark --

Size CULA (s) MKL (s) Speedup

4096 2.43 3.55 1.4611
5120 3.84 543 1.4129
6144 5.69 8.30 1.4583
7168 7.87 1149 1.4594

8192 10.30 19.07 1.8512

Implementation with CulaDgesv, CulaSgesv:

GESV computes the solution to a real system oflireguations A * X = B, where A is
an N-by-N matrix and X and B are N-by-NRHS matricEee LU decomposition with

partial pivoting and row interchanges is used twdaA as A=P *L * U, where P is a
permutation matrix, L is unit lower triangular, akdis upper triangular. The factored
form of A is then used to solve the system of eignatA * X = B.

Calling Subroutine:
culaDeviceSgesv(int n, int nrhs, culaDeviceFloat* iat Ida, culaDevicelnt* ipiv,
culaDeviceFloat* b, int Idb);

culaDeviceDgesv(int n, int nrhs, culaDeviceDoubke* int Ida, culaDevicelnt* ipiv,

culaDeviceDouble* b, int Idb);

where,n: The number of linear equations, i.e., the ordéhe matrix A. N >= 0.

Nrhs: The number of right hand sides, i.e., the numifecolumns of the matrix B.

NRHS >= 0.

a On entry, the N-by-N coefficient matrix A. On gxthe factors L and U from the
factorization A = P*L*U; the unit diagonal elemerdsL are not stored.

Ida: The leading dimension of the array A. LDA >= mBhx{).
ipiv: The pivot indices that define the permutation nmalP; row i of the matrix was
interchanged with row IPIV(i).

13

Spring 2014: Performance Analysis of CULA offedlent NVIDIA GPU Architectures

b: On entry, the N-by-NRHS matrix of right hand sidatrix B.

On exit, if culaNoError is returned, the N-by-NRId&8ution matrix X.
Idb: The leading dimension of the array B. LDB >= maki)1

Note: Results are reported in the Section 4.

V. Implementation with CulaDgetrf, CulaSgetrf:

GETRF computes an LU factorization of a general yhNo matrix A using partial
pivoting with row interchanges. The factorizaticastthe form A=P * L * U where P is a
permutation matrix, L is lower triangular with udlitagonal elements (lower trapezoidal if
m > n), and U is upper triangular (upper trapezdfda < n).

Calling Subroutine:
culaDeviceSgetrf(int m, int n, culaDeviceFloat*i, lda, culaDevicelnt* ipiv);
culaDeviceDgetrf(int m, int n, culaDeviceDouble*iat Ida, culaDevicelnt* ipiv);

Note: Results are reported in the Section 4.

V. Implementation with CulaSgbtrf, CulaDgbtrf:

GBTRF computes an LU factorization of an m-by-ndamatrix A using partial pivoting
with row interchanges. This is the blocked versainthe algorithm, calling Level 3
BLAS.

Calling subroutine:
culaDeviceSgbtrf(int m, int n, int ki, int ku, cidaviceFloat* a, int Ida, culalnt* ipiv);
culaDeviceDgbtrf(int m, int n, int ki, int ku, culeviceDouble* a, int Ida, culalnt* ipiv);

where, m: The number of rows of the matrix A. M &=
n: The number of columns of the matrix A. N >= 0.
kl: The number of subdiagonals within the band oKA.>= 0.

ku: The number of superdiagonals within the band .okl >= 0.

ab: On entry, the matrix A in band storage, in rowsti to 2*KL+KU+1; rows 1 to KL
of the array need not be set. The j-th column @ Atored in the j-th column of the array
AB as follows:

AB(Kl+ku+1+i-j,j) = A(i, j) for max(1,j-ku)<=i<=min(m, j+KkI)

On exit, details of the factorization: U is storasl an upper triangular band matrix with
KL+KU super-diagonals in rows 1 to KL+KU+1, and theultipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+K#1.

Idab: The leading dimension of the array AB. LDAB >=Ka*+KU+1.

Ipiv: The pivot indices; for 1 <= i <= min(M,N), rowdf the matrix was interchanged
with row IPIV(i).

Note: Results are reported in the Section 4.

14 Spring 2014: Performance Analysis of CULA offiesient NVIDIA GPU Architectures

Time(ms)

Time (ms)

4. Results and Analysis:

l. Timing Scaling Analysis: Timing Scaling Analysis graphs are plotted for GE®ETRF and
GBTRF on GeForce GTX680, Tesla C2050 and Tesla K#fli® matrix dimensions on x-axis
and time taken to perform the functionalities irliseéconds on y-axis. The maximum matrix
dimension is 16000.

Timing scaling Analysis
DGESV-CULAR17 Tosla C2050

30000

25000 I

20000

15000

10000

5000
0 — //

100 200 300 400 500 600 700 800 900 1000 1100 1500 2000 2500 4000 8000 16000

Matrix Dimensions
Figurel: Timing Scaling Analysis for DGESV

Timing Sacling Analysis cerorce srxeso

DGETRF- CULAR17
30000

25000
20000
15000
10000

5000

100 200 300 400 500 600 700 800 900 1000 1100 1500 2000 2500 4000 8000 16000

Matrix dimensions
Figure2: Timing Scaling Analysis for DGETRF

Il. FLOP rate Performance Scaling Analysis:
Figure3-4 below show the Performance Scaling Ansilgé CulaDgesv and CulaSgesv on
Tesla K40C, Tesla C2050 and GeForce GTX 680 GPUsclr matrix dimension of 16000.
It can be observed that as the matrix dimensiomdeeasing, CULA is performing better.
Overall, Tesla K40C is the better performer fogeamatrix dimensions because of more GPU
memory available.

15 Spring 2014: Performance Analysis of GUin different NVIDIA GPU Architectures

GFLOP

GFLOP

700

600

500

400

300

200

100

250

200

150

100

50

Overall AnaIyS|s-DGESV Tesla K 40 C

GeForce GTX680-TeslaC2050-Tesla K40C

100 200 300 400 500 600 700 800 900 1000 1100 1500 2000 2500 4000 8000 16000

MAtrix Dimensions

Figure3: Performance Scaling Analysis for DGESV

Overall SGESV Comparison Analysis Gelkorce GIX(650

Tesla C 2050

GeForce GTX 680-TeslaC2050-Tesla K40C

100 200 300 400 500 600 700 800 900 1000 1100 1500 2000 2500 4000 8000 16000

Matrix Dimensions
Figure4: Performance Scaling Analysis for SGESV

The GFLOP performance is measured for double pogciend single precision general matrices
factorization and solve on Tesla K40C, Tesla C2868 GeForce GTX 680 GPU cards, with maximum
matrix dimension of 16000. It is observed that #elKOC is the best performer touching around 430
GFlops for double precision and around 600-700 @$-for maximum matrix dimension of 16000.

16 Spring 2014: Performance Analysis of @Uin different NVIDIA GPU Architectures

GFLOP

Figure5: Performance Scaling Analysis for DGETRF

Figure 5 above shows the GFLOP performance of @opi@cision general matrices triangular factorarati
on Tesla K40C, Tesla C2050 and GeForce GTX 680 @Rids, with maximum matrix dimension of
16000. It is observed that Tesla K40C is the bestopmer touching around 430 GFlops for matrix
dimension of 16000.

400

300

200

100

100 200 300 400 500 600 700 800 900 1000 1100 1500 2000 2500 4000 8000 16000

Matrix Dimensions

Figure6: Performance Scaling Analysis for SGETRF

17 Spring 2014: Performance Analysis ofL@bn different NVIDIA GPU Architectures

Figure 6 above shows the GFLOP performance of sipggcision general matrices triangular factororati
on Tesla K40C, Tesla C2050 and GeForce GTX 680 @®Bitds, with maximum matrix dimension of
16000. It is observed that Tesla K40C is the bestopmer touching around 750 GFlops for matrix

dimension of 16000.

Figure7: Performance Comparison Analysis of DGBTRF/s SGBTRF on Tesla C2050 (b/w = 1/10)

Figure8: Performance Comparison Analysis of DGBTRF/s SGBTRF on GeForce GTX680 (b/w = 1/10)

18 Spring 2014: Performance Analysis ofL@lon different NVIDIA GPU Architectures

Figure9: Performance Comparison Analysis of DGBTRF/s SGBTRF on Tesla K40C (b/w = 1/10)

Figure 7-9 above show the performance comparisatysis graphs plotted for dense banded triangular
factorized matrices with maximum dimension of 16@0@ bandwidth = 1/10 on all the three GPU cards.
The performance in terms of GFLOP is much lower fanded matrices factorization as compared to

general matrices factorization as shown in figute 4

Figurel0: Performance Analysis of DGBTRF with bandvidth = 1/10

19 Spring 2014: Performance Analysis ofLl@lbn different NVIDIA GPU Architectures

Figurell: Performance Analysis of GBTRF with diffeent bandwidths

Figure 10-11 above are showing the Performanceysisabf banded triangular matrices with bandwidth =
1/10 on all three GPU cards and performance arsalyih respect to different bandwidths on Tesla €40
respectively. The main two reasons that are resplenfor such behavior are cache access variatidim w
changing the bandwidth and synchronization thatasaged internally within the subroutine functiat.c

Figurel2: Relative residual Analysis of DGBTRF vs GBTRF (bandwidth = 1/10)

20 Spring 2014: Performance Analysis of CULA offiesient NVIDIA GPU Architectures

Figurel3: Absolute residual Analysis of DGBTRF vs GBTRF (bandwidth = 1/10)

Figure 12-13 above show the relative and absoksg&lual comparison analysis of dense banded
matrices (single and double precision). The redatresidual analysis shows the convergence
residual and it can be interpreted from the ab@salts that double precision functionality has

much better accuracy relative to the single prenignplementation.

Conclusion:

The performance of CULA R17 varies with differenPG cards due to the variation in
architectural specifications, different GPU memsige and bandwidth. Different linear algebra
functionalities were illustrated in this report, iath are driven by different algorithms. For all ske
functionalities, it was observed that CULA givebedter performance for large matrix dimensions
and on the device with more GPU memory availablsoAthe implementations were optimized by
pinning the host memory but it was not very helpfiibwever, the performance remained similar
as compared to non-pinned memory. Also, the bendting results show that CULA R18
(requires CUDA 6.0) has better speed-ups over MKc@mpared to CULA R17. CUDA 6.0 has a
unified memory which manages optimized memory fiemsetween host and devicEhe key is
that the system automatically migrates data alkxtat Unified Memory between host and device
so that it looks like CPU memory to code runningtbea CPU, and like GPU memory to code
running on the GPU.

References:

[1] CULA tools: http://www.culatools.com/blog/2010/04/17/11-initf@rmi-performance/

[2] CULA R17 Programmers Guide

[3] CULA R17 Reference Manual

[4] TR-2012-04: “A GPU-based LU factorization ofrde banded matrices” A. Li, A. Seidl, D.
Negrut.

[5] TR-2011-01: “SPIKE - A Hybrid Algorithm for Lge Banded Systems” T. Heyn, D. Negrut.

21

Spring 2014: Performance Analysis of CULA offiesient NVIDIA GPU Architectures

