

Technical Report 2014-02

Performance Analysis of CULA on different NVIDIA GPU
Architectures

Prateek Gupta

May 20, 2014

1 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Table of Contents:

1. Introduction
a. Primary Objective
b. Motivation
c. Background
d. Overview
e. CULA libraries

2. Performance Analysis Framework
a. Programming considerations
b. Analysis Structure and Framework Functions
c. Configuring the Environment

3. CULA Dense Functionalities
a. Benchmarking CULA R17 vs Intel MKL
b. Benchmarking CULA R18 vs Intel MKL
c. Implementation of GESV
d. Implementation of GETRF
e. Implementation of GBTRF

4. Analysis and Results
a. Timing scaling analysis
b. Flop rate Performance scaling analysis

5. Conclusion
6. References

2 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

I. Introduction :

I. Primary Objective: The objective is to undertake an in-depth study of the FLOP rate
performance analysis and timing scaling analysis of the CULA Dense R17 (with CUDA 5.5)
functionalities: (i) GESV (ii) GETRF (iii) GBTRF on different NVIDIA CUDA-enabled GPU
architectures: (i) NVIDIA Tesla C2050, (ii) NVIDIA GeForce GTX 680 (iii) NVIDIA Tesla
K40C. The functionalities are implemented using CUDA programming and CULA framework
functions for both single precision and double precision.

II. Motivation : The CULA is a GPU accelerated linear algebra library that utilizes the NVIDIA

CUDA parallel computing architecture to dramatically improve the computation speed of

sophisticated mathematics. CULA is an implementation of the Linear Algebra PACKage

(LAPACK) interface for CUDA enabled NVIDIA GPU. The CULA is a next generation

linear algebra package that uses the GPU as a co-processor to achieve speedups over existing

linear algebra packages. As there is no matrix inversion operation in CUBLAS, we have to

ask help from CULA. It is built on NVIDIA CUDA and NVIDIA CUBLAS and uses the

Intel® Math Kernel Library (MKL) internally. The performance and actual speed ups of

CULA depends heavily on the algorithm and the size of the data set. Additionally, the

performance also varies with the GPU memory available for performing the computation,

which varies with different flavors of NVIDIA GPU cards as claimed by the CULA experts in

one of their blogs (). This feature can be potentially explored by using the device interface

model of CULA. So, the performance analysis in terms of GFLOPS can be done on Fermi,

Tesla as well as Kepler Architectures. This study is important as it will reflect the advantages

of using a particular architecture for getting optimized performance for our Spike GPU solver

[4,5]. For example, the performance of the first Kepler card, GeForce GTX 680 which has a

downside that it has comparatively low performance numbers for double precision as

compared to other traditional chips but has very good single precision performance. So, many

other such interesting features will come out into play when CULA will be ported onto these

architectures.

The study stresses on finding the GFLOP performance of three different memory intensive

linear algebra CULA Dense functionalities with high degree of usage in different algorithms

on different types of NVIDIA GPU architectures like Fermi and Kepler.

III. Background: The primary reference of this study is [1]. CULA’s standard Dense edition
implements a much larger set of functions from LAPACK as shown in Table 1. Building from
the information presented, this study does a FLOP rate performance analysis of compute /
memory intensive linear algebra functionalities. In this study, the code is then further
optimized by pinning the host memory and the FLOP rate analysis after optimization is
presented. This optimization tries to mitigate the performance overhead in data transfer
between the host and device.

IV. Independent Study Overview: This study exercises different linear algebra functions in

single and double precision. The performance analysis will involve running different
applications on CULA dense R17 and CUDA 5.5 on different NVIDIA GPU cards with
different architectural specifications as shown in Table1, which are as follows:

· Dense General Matrix Solve (using LU decomposition)- DGESV, SGESV
· Dense General Matrix triangular factorization- SGETRF, DGETRF
· Dense Banded Matrix Triangular factorization- SGBTRF, DGBTRF

The number of floating point operations for factorization and solving is 0.67 times N3 and 2
times N2 respectively.

3 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Table1: Architectural Specifications of Tesla C2050, GeForce GTX680, Tesla K40C

S.No. Features Tesla C2050

(Fermi

Architecture)

GeForce GTX680

(Kepler

Architecture)

Tesla K40C

(Kepler

Architecture)

1 CUDA cores/ (SMs/SMXs) 448/14 1536/8 2880/15

2 Memory 3072 MB

(GDDR5)

2048 MB

(GDDR5)

12288 MB

(GDDR5)

3 Fab (nm)/Code Name 40/ GF 100 28/ GK 104 28/ GK 110B

4 Peak GFLOPS (FMA-Double

precision)

515.2 3090.43 1430

5 Core Configuration (Unified

shaders: Texture Mapping

units: Render output units)

448:56:48

1536:128:32 2880:240:48

6 Bandwidth (GB/s) 144 192.2 288

V. CULA Libraries: CULA has two libraries as follows:-

I. CULA Dense: A GPU-accelerated implementation of dense linear algebra routines.
Following are the linear equation functionalities supported by CULA Dense:

Matrix Type Operation S C D Z

General Factorize and solve SGESV

SGETRF

SGETRS

SGETRI

CGESV

CGETRF

CGETRS

CGETRI

DGESV

DSGESV

DGETRF

DGETRS

DGETRI

ZGESV

ZCGESV

ZGETRF

ZGETRS

ZGETRI

Factorize and solve
with iterative
refinement

LU factorization
Solve using LU
factorization
Invert using LU
factorization

Positive
Definite

Factorize and solve SPOSV

SPOTRF

CPOSV

CPOTRF

DPOSV

DPOTRF

ZPOSV

ZPOTRF

Cholesky
Factorization

Triangular Invert triangular
matrix

STRTRI

STRTRS

CTRTRI

CTRTRS

DTRTRI

DTRTRS

ZTRTRI

ZTRTRS Solve triangular

system

Banded LU factorization SGBTRF CGBTRF DGBTRF ZGBTRF
Positive
Definite
Banded

Cholesky
factorization

SPBTRF CPBTRF DPBTRF ZPBTRF

4 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

II. CULA Sparse: A GPU-accelerated library for linear algebra that provides iterative solvers
for sparse systems. Since, in this study, the focus is on CULA Dense linear functionalities
so, CULA Sparse functionalities are not discussed here.

II. Performance Analysis Framework

I. Programming Considerations:
Matrix Storage: When providing data to CULA routines, it is important to consider that
the data is stored in column-major order in memory. Column-major ordering is the
opposite of the row-major ordering because elements of the matrix are instead stored by
column, rather than by row. In this storage scheme, elements of a column are contiguous
in memory, while elements of a row are not.

Figure1: A column-major ordered matrix. Elements are stored in memory in the order shown by the arrow.

Performing a transpose on the row-major data will convert it to column-major and vice-
versa. For column-major data, the leading dimension the leading dimension is equal to the
height of a column, or equivalently, the number of rows in the matrix. This is the height
of the matrix as allocated and may be larger than the matrix used in the computation.

Performance Optimization: CULA is specifically designed to leverage the massively
parallel computational resources of the GPU, with a particular focus on large problems
whose execution on a standard CPU is too time consuming.

� Problem Size- As a general rule, applying CULA for larger problems will
maximize performance gains with respect to other computational linear algebra
packages [2]. The maximum problem size is constrained by the data type in use
and the maximum GPU memory. For example, the maximum size for a problem
that uses double-precision complex data is roughly one fourth of the maximum
problem size of a single-precision problem for the same matrix dimensions, since
the size of these data types differ by a factor of four. This can also be seen in the
‘Results and Analysis’ section of this report.

� Accuracy Requirements- CULA offers both single and double-precision
floating point support for its included routines. While the latest NVIDIA GPU
hardware offers support for both of these data types, it should be noted that
current NVIDIA GPU hardware performs best when operating on single-
precision data [2] i.e. additional performance can be achieved at the cost of
accuracy through the use of single-precision routines.

� Device Interface: The Device interface follows the standards set forth in the

NVIDIA CUBLAS package. In this interface, it is required to allocate and
populate GPU memory and then call CULA functions to operate on that
memory. Memory allocation is handled via cudaMalloc and cudaFree, available
in the CUDA toolkit. While using pitched memory, it is our responsibility to
ensure that their allocations are appropriate.

5 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

CULA’s standard Dense version provides specialized allocation functions that
pitch data to the optimal size for CULA. These functions are
culaDeviceMalloc() and culaDeviceFree(), found in the cula_device.h header
of CULA Dense.

� Leading Dimension: All LAPACK matrices are specified as a pointer and a

“leading dimension” parameter. The leading dimension describes the allocated
size of the matrix, which may be equal to or larger than the actual matrix height.
Thus if a matrix input is described as size “(LDA, N)” it simply means that the
storage for the matrix is at least LDA x N in size. The section of that array that
contains valid data will be described by other parameters, often M and N.

II. Analysis Structure and Framework Functions:

Framework Function Meaning
culaInitialize() Initializes CULA; must be called before using any

other function. Some functions have an exception
to this rule like culaGetDeviceCount(),
culaSelectDevice(), and version query functions.

culaShutdown() Shuts down CULA
culaGetStatusString() Associates a culaStatus enum with a readable error

string.
culaGetStatusAsString() Returns the culaStatus name as a string.
culaGetErrorInfo() This function is used to provide extended

functionality that LAPACK’s info parameter
typically provides.

culaGetErrorInfoString() Associates a culaStatus and culaInfo with a
readable error string

culaFreeBuffers Releases any memory buffers stored internally by
CULA

culaGetVersion Reports the version number of CULA
Framework Function Meaning
culaGetCudaMinimumVersion Reports the CUDA_VERSION that the running

version of CULA was compiled against, which
indicates the minimum
version of CUDA that is required to use this library

culaGetCudaRuntimeVersion() Reports the version of the CUDA runtime that the
operating system linked against when the program
was loaded.

culaGetCudaDriverVersion() Reports the version of the CUDA driver installed
on the system.

culaGetCublasMinimumVersion() Reports the CUBLAS_VERSION that the running
version of CULA was compiled against, which
indicates the minimum
version of CUBLAS that is required to use this
library.

culaGetCublasRuntimeVersion() Reports the version of the CUBLAS runtime that
operating system linked against when the program
was loaded.

culaGetDeviceCount() Reports the number of GPU devices Can be called
before culaInitialize().

culaGetExecutingDevice() Reports the id of the GPU device executing CULA.
culaGetDeviceInfo() Prints information to a buffer about a specified

device.
culaGetOptimalPitch() Calculates a pitch that is optimal for CULA when

using the device interface.
culaDeviceMalloc() Allocates memory on the device in a pitch that is

optimal for CULA.
culaDeviceFree() Frees memory that has been allocated with

culaDeviceMalloc.

6 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

III. Configuring the Environment:
The first step in this process is to set up environment variables so that your build scripts
can infer the location of CULA. Add the following lines to the .bashrc:
export CULA_ROOT=/usr/local/cula
export CULA_INC_PATH=$CULA_ROOT/include
export CULA_LIB_PATH_32=$CULA_ROOT/lib
export CULA_LIB_PATH_64=$CULA_ROOT/lib64
(where CULA_ROOT is customized to the location where CULA is installed)
After setting environment variables, CULA can be built by configuring the build scripts
(module load culadense) and by using makefile.

III. CULA Dense Functionalities
I. Benchmarking CULA R17 vs Intel MKL on Euler99 (Tesla K40C):

[pkgupta3@euler99 benchmark]$./benchmark
Initializing CULA...
Initializing MKL...
Benchmarking the following functions:

 SGEQRF
 SGETRF
 SGELS
 SGGLSE
 SGESV
 SGESVD
 SSYEV
 DGEQRF
 DGETRF

DGELS
 DGGLSE
 DGESV
 DGESVD
 DSYEV

 -- SGEQRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.19 0.31 1.6012
 5120 0.28 0.55 1.9577
 6144 0.43 0.92 2.1636
 7168 0.61 1.42 2.3283
 8192 0.83 2.18 2.6264

 -- SGETRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.12 0.16 1.2944
 5120 0.19 0.28 1.4750
 6144 0.27 0.48 1.7634
 7168 0.39 0.72 1.8318
8192 0.53 1.10 2.0923

7 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- SGELS Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.28 0.35 1.2325
 5120 0.43 0.62 1.4481
 6144 0.63 1.02 1.6208
 7168 0.88 1.56 1.7674
 8192 1.17 2.26 1.9336

 -- SGGLSE Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.31 1.55 5.0503
 5120 0.48 2.51 5.2651
 6144 0.69 3.74 5.4573
 7168 0.94 5.25 5.6026
 8192 1.24 7.16 5.7733
 -- SGESV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.13 0.16 1.2737
 5120 0.20 0.28 1.4250
 6144 0.29 0.49 1.7278
 7168 0.41 0.74 1.7983
 8192 0.55 1.11 2.0338

 -- SGESVD Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 16.80 26.05 1.5508
 5120 27.29 43.68 1.6005
 6144 41.12 67.82 1.6491
 7168 58.05 113.88 1.9619
 8192 77.90 171.80 2.2053

 -- SSYEV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 1.70 1.36 0.7978
 5120 2.67 2.48 0.9272
 6144 3.97 5.02 1.2641
 7168 5.62 7.21 1.2819
 8192 7.51 10.02 1.3341

8 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- DGEQRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.36 0.68 1.9019
 5120 0.49 1.06 2.1727
 6144 0.74 1.86 2.5284
 7168 1.05 2.74 2.6026
 8192 1.48 4.85 3.2855

 -- DGETRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.20 0.34 1.6807
 5120 0.33 0.55 1.6416
 6144 0.47 1.03 2.1835
 7168 0.67 1.42 2.1193
 8192 0.92 3.00 3.2454

 -- DGELS Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.49 0.64 1.3119
 5120 0.76 1.14 1.4957
 6144 1.11 1.91 1.7229
 7168 1.52 2.92 1.9233
 8192 2.07 4.23 2.0479

 -- DGGLSE Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.53 3.27 6.1585
 5120 0.79 5.07 6.4347
 6144 1.15 7.76 6.7629
 7168 1.57 10.70 6.7944
 8192 2.13 15.31 7.2020

 -- DGESV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.21 0.36 1.7184
 5120 0.33 0.56 1.6830
 6144 0.49 0.97 1.9805
 7168 0.69 1.43 2.0786
 8192 0.96 2.97 3.0903

9 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- DGESVD Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 22.10 31.46 1.4231
 5120 37.80 54.24 1.4352
 6144 58.44 90.94 1.5561
 7168 86.54 142.55 1.6471
 8192 122.94 241.05 1.9607

 -- DSYEV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 2.54 3.49 1.3715
 5120 3.92 5.33 1.3602
 6144 5.79 8.27 1.4278
 7168 7.87 11.29 1.4341
8192 10.60 19.00 1.7922
8193

II. Benchmarking CULA R18 vs Intel MKL on Euler99 (Tesla K40C)
[pkgupta3@euler99 benchmark]$./benchmark
Initializing CULA...
Initializing MKL...

Benchmarking the following functions:

 SGEQRF
 SGETRF
 SGELS
 SGGLSE
 SGESV
 SGESVD
 SSYEV
 DGEQRF
 DGETRF
 DGELS
 DGGLSE
 DGESV
 DGESVD
 DSYEV

 -- SGEQRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.22 0.37 1.6909
 5120 0.30 0.69 2.3298
 6144 0.44 1.20 2.7126
 7168 0.63 1.73 2.7554
8192 0.85 2.82 3.3281

10 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- SGETRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.12 0.23 1.9259
 5120 0.19 0.43 2.2097
 6144 0.27 0.81 2.9622
 7168 0.40 1.05 2.6517
 8192 0.52 1.35 2.6126

 -- SGELS Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.29 0.53 1.8400
 5120 0.43 0.62 1.4372
 6144 0.63 1.03 1.6335
 7168 0.88 1.56 1.7679
 8192 1.17 2.26 1.9355

 -- SGGLSE Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.32 1.55 4.8889
 5120 0.48 2.51 5.1851
 6144 0.68 3.77 5.5439
 7168 0.93 5.25 5.6481
 8192 1.23 7.18 5.8427

 -- SGESV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.12 0.16 1.2847
 5120 0.19 0.29 1.4710
 6144 0.28 0.50 1.7773
 7168 0.39 0.73 1.8581
 8192 0.53 1.15 2.1701

 -- SGESVD Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 16.89 25.82 1.5289
 5120 27.64 44.77 1.6196
 6144 41.47 68.58 1.6535
 7168 58.70 117.67 2.0046
 8192 78.55 177.53 2.2600

11 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- SSYEV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 1.65 1.42 0.8588
 5120 2.68 2.49 0.9283
 6144 4.08 5.06 1.2392
 7168 5.41 6.97 1.2889
 8192 7.40 10.10 1.3662

 -- DGEQRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.28 0.69 2.5060
 5120 0.46 1.05 2.2844
 6144 0.71 1.89 2.6695
 7168 1.02 3.30 3.2179
 8192 1.44 4.86 3.3690

 -- DGETRF Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.20 0.34 1.7257
 5120 0.32 0.55 1.7093
 6144 0.49 1.07 2.2083
 7168 0.67 1.45 2.1595
 8192 0.94 3.04 3.2488

 -- DGELS Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
4096 0.45 0.65 1.4478
5120 0.71 1.15 1.6165
6144 1.06 1.90 1.7986
7168 1.46 2.93 2.0061
8192 2.02 4.23 2.0962

 -- DGGLSE Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.47 3.30 7.0021
 5120 0.74 5.13 6.9317
 6144 1.09 7.69 7.0707
 7168 1.51 10.67 7.0741
8192 2.05 15.26 7.4448

12 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 -- DGESV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 0.20 0.34 1.6483
 5120 0.34 0.56 1.6341
 6144 0.48 1.08 2.2549
 7168 0.68 1.46 2.1433
 8192 0.94 3.09 3.2924

 -- DGESVD Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 22.23 31.35 1.4104
 5120 38.00 54.18 1.4257
 6144 58.57 91.00 1.5537
 7168 86.57 142.19 1.6425
 8192 122.97 241.61 1.9649

 -- DSYEV Benchmark --

 Size CULA (s) MKL (s) Speedup
------ ---------- ---------- ---------
 4096 2.43 3.55 1.4611
 5120 3.84 5.43 1.4129
 6144 5.69 8.30 1.4583
 7168 7.87 11.49 1.4594
8192 10.30 19.07 1.8512

III. Implementation with CulaDgesv, CulaSgesv:

GESV computes the solution to a real system of linear equations A * X = B, where A is
an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with
partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a
permutation matrix, L is unit lower triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations A * X = B.

Calling Subroutine:
culaDeviceSgesv(int n, int nrhs, culaDeviceFloat* a, int lda, culaDeviceInt* ipiv,
culaDeviceFloat* b, int ldb);

culaDeviceDgesv(int n, int nrhs, culaDeviceDouble* a, int lda, culaDeviceInt* ipiv,
culaDeviceDouble* b, int ldb);
where, n: The number of linear equations, i.e., the order of the matrix A. N >= 0.
Nrhs: The number of right hand sides, i.e., the number of columns of the matrix B.
NRHS >= 0.
a: On entry, the N-by-N coefficient matrix A. On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal elements of L are not stored.

lda: The leading dimension of the array A. LDA >= max(1,N).

ipiv: The pivot indices that define the permutation matrix P; row i of the matrix was

interchanged with row IPIV(i).

13 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

 b: On entry, the N-by-NRHS matrix of right hand side matrix B.

On exit, if culaNoError is returned, the N-by-NRHS solution matrix X.
ldb: The leading dimension of the array B. LDB >= max(1,N).

Note: Results are reported in the Section 4.

IV. Implementation with CulaDgetrf, CulaSgetrf:

GETRF computes an LU factorization of a general M-by-N matrix A using partial
pivoting with row interchanges. The factorization has the form A = P * L * U where P is a
permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if
m > n), and U is upper triangular (upper trapezoidal if m < n).

Calling Subroutine:
culaDeviceSgetrf(int m, int n, culaDeviceFloat* a, int lda, culaDeviceInt* ipiv);
culaDeviceDgetrf(int m, int n, culaDeviceDouble* a, int lda, culaDeviceInt* ipiv);

Note: Results are reported in the Section 4.

V. Implementation with CulaSgbtrf, CulaDgbtrf:

GBTRF computes an LU factorization of an m-by-n band matrix A using partial pivoting
with row interchanges. This is the blocked version of the algorithm, calling Level 3
BLAS.

Calling subroutine:
culaDeviceSgbtrf(int m, int n, int kl, int ku, culaDeviceFloat* a, int lda, culaInt* ipiv);
culaDeviceDgbtrf(int m, int n, int kl, int ku, culaDeviceDouble* a, int lda, culaInt* ipiv);

where, m: The number of rows of the matrix A. M >= 0.

 n: The number of columns of the matrix A. N >= 0.

 kl : The number of subdiagonals within the band of A. KL >= 0.

 ku: The number of superdiagonals within the band of A. KU >= 0.
ab: On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL
of the array need not be set. The j-th column of A is stored in the j-th column of the array
AB as follows:
AB(kl+ku+1+i-j,j) = A(i, j) for max(1,j-ku)<=i<=min(m, j+kl)
On exit, details of the factorization: U is stored as an upper triangular band matrix with
KL+KU super-diagonals in rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
ldab: The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
Ipiv : The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged
with row IPIV(i).

Note: Results are reported in the Section 4.

14 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

4. Results and Analysis:

I. Timing Scaling Analysis: Timing Scaling Analysis graphs are plotted for GESV, GETRF and
GBTRF on GeForce GTX680, Tesla C2050 and Tesla K40C with matrix dimensions on x-axis
and time taken to perform the functionalities in milliseconds on y-axis. The maximum matrix
dimension is 16000.

Figure1: Timing Scaling Analysis for DGESV

Figure2: Timing Scaling Analysis for DGETRF

II. FLOP rate Performance Scaling Analysis:
Figure3-4 below show the Performance Scaling Analysis of CulaDgesv and CulaSgesv on
Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards for matrix dimension of 16000.
It can be observed that as the matrix dimension is increasing, CULA is performing better.
Overall, Tesla K40C is the better performer for large matrix dimensions because of more GPU
memory available.

15 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure3: Performance Scaling Analysis for DGESV

Figure4: Performance Scaling Analysis for SGESV

The GFLOP performance is measured for double precision and single precision general matrices
factorization and solve on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum
matrix dimension of 16000. It is observed that Tesla K40C is the best performer touching around 430
GFlops for double precision and around 600-700 GFlops for maximum matrix dimension of 16000.

16 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure5: Performance Scaling Analysis for DGETRF

Figure 5 above shows the GFLOP performance of double precision general matrices triangular factorization
on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum matrix dimension of
16000. It is observed that Tesla K40C is the best performer touching around 430 GFlops for matrix
dimension of 16000.

Figure6: Performance Scaling Analysis for SGETRF

17 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure 6 above shows the GFLOP performance of single precision general matrices triangular factorization
on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum matrix dimension of
16000. It is observed that Tesla K40C is the best performer touching around 750 GFlops for matrix
dimension of 16000.

Figure7: Performance Comparison Analysis of DGBTRF vs SGBTRF on Tesla C2050 (b/w = 1/10)

Figure8: Performance Comparison Analysis of DGBTRF vs SGBTRF on GeForce GTX680 (b/w = 1/10)

18 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure9: Performance Comparison Analysis of DGBTRF vs SGBTRF on Tesla K40C (b/w = 1/10)

Figure 7-9 above show the performance comparison analysis graphs plotted for dense banded triangular
factorized matrices with maximum dimension of 16000 and bandwidth = 1/10 on all the three GPU cards.
The performance in terms of GFLOP is much lower for banded matrices factorization as compared to
general matrices factorization as shown in figure 4-5.

Figure10: Performance Analysis of DGBTRF with bandwidth = 1/10

19 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure11: Performance Analysis of GBTRF with different bandwidths

Figure 10-11 above are showing the Performance analysis of banded triangular matrices with bandwidth =

1/10 on all three GPU cards and performance analysis with respect to different bandwidths on Tesla K40C

respectively. The main two reasons that are responsible for such behavior are cache access variation with

changing the bandwidth and synchronization that is managed internally within the subroutine function call.

Figure12: Relative residual Analysis of DGBTRF vs SGBTRF (bandwidth = 1/10)

20 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

Figure13: Absolute residual Analysis of DGBTRF vs SGBTRF (bandwidth = 1/10)

Figure 12-13 above show the relative and absolute residual comparison analysis of dense banded
matrices (single and double precision). The relative residual analysis shows the convergence
residual and it can be interpreted from the above results that double precision functionality has
much better accuracy relative to the single precision implementation.

5. Conclusion:
The performance of CULA R17 varies with different GPU cards due to the variation in
architectural specifications, different GPU memory size and bandwidth. Different linear algebra
functionalities were illustrated in this report, which are driven by different algorithms. For all these
functionalities, it was observed that CULA gives a better performance for large matrix dimensions
and on the device with more GPU memory available. Also, the implementations were optimized by
pinning the host memory but it was not very helpful. However, the performance remained similar
as compared to non-pinned memory. Also, the benchmarking results show that CULA R18
(requires CUDA 6.0) has better speed-ups over MKL as compared to CULA R17. CUDA 6.0 has a
unified memory which manages optimized memory transfer between host and device. The key is
that the system automatically migrates data allocated in Unified Memory between host and device
so that it looks like CPU memory to code running on the CPU, and like GPU memory to code
running on the GPU.

6. References:

[1] CULA tools: http://www.culatools.com/blog/2010/04/17/11-initial-fermi-performance/

[2] CULA R17 Programmers Guide

[3] CULA R17 Reference Manual

[4] TR-2012-04: “A GPU-based LU factorization of dense banded matrices” A. Li, A. Seidl, D.

Negrut.

[5] TR-2011-01: “SPIKE - A Hybrid Algorithm for Large Banded Systems” T. Heyn, D. Negrut.

21 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

