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I. Introduction :  
 

I. Primary Objective: The objective is to undertake an in-depth study of the FLOP rate 
performance analysis and timing scaling analysis of the CULA Dense R17 (with CUDA 5.5) 
functionalities: (i) GESV (ii) GETRF (iii) GBTRF on different NVIDIA CUDA-enabled GPU 
architectures: (i) NVIDIA Tesla C2050, (ii) NVIDIA GeForce GTX 680 (iii) NVIDIA Tesla 
K40C. The functionalities are implemented using CUDA programming and CULA framework 
functions for both single precision and double precision. 

 
II. Motivation :  The CULA is a GPU accelerated linear algebra library that utilizes the NVIDIA 

CUDA parallel computing architecture to dramatically improve the computation speed of 

sophisticated mathematics. CULA is an implementation of the Linear Algebra PACKage 

(LAPACK) interface for CUDA enabled NVIDIA GPU.  The CULA is a next generation 

linear algebra package that uses the GPU as a co-processor to achieve speedups over existing 

linear algebra packages. As there is no matrix inversion operation in CUBLAS, we have to 

ask help from CULA. It is built on NVIDIA CUDA  and NVIDIA CUBLAS  and uses the 

Intel® Math Kernel Library (MKL)  internally. The performance and actual speed ups of 

CULA depends heavily on the algorithm and the size of the data set. Additionally, the 

performance also varies with the GPU memory available for performing the computation, 

which varies with different flavors of NVIDIA GPU cards as claimed by the CULA experts in 

one of their blogs (). This feature can be potentially explored by using the device interface 

model of CULA. So, the performance analysis in terms of GFLOPS can be done on Fermi, 

Tesla as well as Kepler Architectures. This study is important as it will reflect the advantages 

of using a particular architecture for getting optimized performance for our Spike GPU solver 

[4,5]. For example, the performance of the first Kepler card, GeForce GTX 680 which has a 

downside that it has comparatively low performance numbers for double precision as 

compared to other traditional chips but has very good single precision performance. So, many 

other such interesting features will come out into play when CULA will be ported onto these 

architectures. 

The study stresses on finding the GFLOP performance of three different memory intensive 

linear algebra CULA Dense functionalities with high degree of usage in different algorithms 

on different types of NVIDIA GPU architectures like Fermi and Kepler. 
 

III.  Background: The primary reference of this study is [1]. CULA’s standard Dense edition 
implements a much larger set of functions from LAPACK as shown in Table 1. Building from 
the information presented, this study does a FLOP rate performance analysis of compute / 
memory intensive linear algebra functionalities. In this study, the code is then further 
optimized by pinning the host memory and the FLOP rate analysis after optimization is 
presented. This optimization tries to mitigate the performance overhead in data transfer 
between the host and device. 

 
IV. Independent Study Overview: This study exercises different linear algebra functions in 

single and double precision. The performance analysis will involve running different 
applications on CULA dense R17 and CUDA 5.5 on different NVIDIA GPU cards with 
different architectural specifications as shown in Table1, which are as follows: 

·  Dense General Matrix Solve (using LU decomposition)- DGESV, SGESV 
·  Dense General Matrix triangular factorization- SGETRF, DGETRF 
·  Dense Banded Matrix Triangular factorization- SGBTRF, DGBTRF  

The number of floating point operations for factorization and solving is 0.67 times N3 and 2 
times N2 respectively.              
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Table1: Architectural Specifications of Tesla C2050, GeForce GTX680, Tesla K40C 

S.No. Features Tesla C2050 

(Fermi 

Architecture) 

GeForce GTX680 

(Kepler 

Architecture) 

Tesla K40C 

(Kepler 

Architecture) 

1 CUDA cores/ (SMs/SMXs) 448/14 1536/8 2880/15 

2 Memory 3072 MB 

(GDDR5) 

2048 MB 

(GDDR5) 

12288 MB 

(GDDR5) 

3 Fab (nm)/Code Name 40/ GF 100 28/ GK 104 28/ GK 110B 

4 Peak GFLOPS (FMA-Double 

precision) 

515.2 3090.43 1430 

5 Core Configuration (Unified 

shaders: Texture Mapping 

units: Render output units) 

 

448:56:48 

 

1536:128:32 2880:240:48 

6 Bandwidth (GB/s) 144 192.2 288 

 

 
V. CULA Libraries: CULA has two libraries as follows:- 

I. CULA Dense: A GPU-accelerated implementation of dense linear algebra routines. 
Following are the linear equation functionalities supported by CULA Dense: 

 

Matrix Type Operation S C D Z 

General Factorize and solve SGESV 
 
 
 
 
SGETRF 
 
SGETRS 
 
SGETRI 

CGESV 
 
 
 
 
CGETRF 
 
CGETRS 
 
CGETRI 

DGESV 
 
DSGESV 
 
 
DGETRF 
 
DGETRS 
 
DGETRI 

ZGESV 
 
ZCGESV 
 
 
ZGETRF 
 
ZGETRS 
 
ZGETRI 

Factorize and solve 
with iterative 
refinement 

LU factorization 
Solve using LU 
factorization 
Invert using LU 
factorization 

Positive 
Definite 

Factorize and solve SPOSV 
 
SPOTRF 

CPOSV 
 
CPOTRF 

DPOSV 
 
DPOTRF 

ZPOSV 
 
ZPOTRF 

Cholesky 
Factorization 

Triangular Invert triangular 
matrix 

STRTRI 
 
STRTRS 

CTRTRI 
 
CTRTRS 

DTRTRI 
 
DTRTRS 

ZTRTRI 
 
ZTRTRS Solve triangular 

system 

Banded LU factorization SGBTRF CGBTRF DGBTRF ZGBTRF 
Positive 
Definite 
Banded 

Cholesky 
factorization 

SPBTRF CPBTRF DPBTRF ZPBTRF 
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II.  CULA Sparse: A GPU-accelerated library for linear algebra that provides iterative solvers 
for sparse systems. Since, in this study, the focus is on CULA Dense linear functionalities 
so, CULA Sparse functionalities are not discussed here. 

 
II.  Performance Analysis Framework 

I.  Programming Considerations: 
Matrix Storage:  When providing data to CULA routines, it is important to consider that 
the data is stored in column-major order in memory. Column-major ordering is the 
opposite of the row-major ordering because elements of the matrix are instead stored by 
column, rather than by row. In this storage scheme, elements of a column are contiguous 
in memory, while elements of a row are not. 
 

                               
Figure1: A column-major ordered matrix. Elements are stored in memory in the order shown by the arrow. 
 
 

Performing a transpose on the row-major data will convert it to column-major and vice-
versa. For column-major data, the leading dimension the leading dimension is equal to the 
height of a column, or equivalently, the number of rows in the matrix. This is the height 
of the matrix as allocated and may be larger than the matrix used in the computation. 
 
Performance Optimization: CULA is specifically designed to leverage the massively 
parallel computational resources of the GPU, with a particular focus on large problems 
whose execution on a standard CPU is too time consuming. 
 

�  Problem Size- As a general rule, applying CULA for larger problems will 
maximize performance gains with respect to other computational linear algebra 
packages [2]. The maximum problem size is constrained by the data type in use 
and the maximum GPU memory. For example, the maximum size for a problem 
that uses double-precision complex data is roughly one fourth of the maximum 
problem size of a single-precision problem for the same matrix dimensions, since 
the size of these data types differ by a factor of four. This can also be seen in the 
‘Results and Analysis’ section of this report. 

�  Accuracy Requirements- CULA offers both single and double-precision 
floating point support for its included routines. While the latest NVIDIA GPU 
hardware offers support for both of these data types, it should be noted that 
current NVIDIA GPU hardware performs best when operating on single-
precision data [2] i.e. additional performance can be achieved at the cost of 
accuracy through the use of single-precision routines. 

 
�  Device Interface: The Device interface follows the standards set forth in the 

NVIDIA CUBLAS package. In this interface, it is required to allocate and 
populate GPU memory and then call CULA functions to operate on that 
memory. Memory allocation is handled via cudaMalloc and cudaFree, available 
in the CUDA toolkit. While using pitched memory, it is our responsibility to 
ensure that their allocations are appropriate.  
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CULA’s standard Dense version provides specialized allocation functions that 
pitch data to the optimal size for CULA. These functions are 
culaDeviceMalloc() and culaDeviceFree(), found in the cula_device.h header 
of CULA Dense. 

 
�  Leading Dimension: All LAPACK matrices are specified as a pointer and a 

“leading dimension” parameter. The leading dimension describes the allocated 
size of the matrix, which may be equal to or larger than the actual matrix height. 
Thus if a matrix input is described as size “(LDA, N)” it simply means that the 
storage for the matrix is at least LDA x N in size. The section of that array that 
contains valid data will be described by other parameters, often M and N. 

 
II.  Analysis Structure and Framework Functions: 

 
Framework Function Meaning 
culaInitialize() Initializes CULA; must be called before using any 

other function. Some functions have an exception 
to this rule like culaGetDeviceCount(), 
culaSelectDevice(), and version query functions. 

culaShutdown() Shuts down CULA 
culaGetStatusString() Associates a culaStatus enum with a readable error 

string. 
culaGetStatusAsString() Returns the culaStatus name as a string. 
culaGetErrorInfo() This function is used to provide extended 

functionality that LAPACK’s info parameter 
typically provides. 

culaGetErrorInfoString() Associates a culaStatus and culaInfo with a 
readable error string 

culaFreeBuffers Releases any memory buffers stored internally by 
CULA 

culaGetVersion Reports the version number of CULA 
Framework Function Meaning 
culaGetCudaMinimumVersion Reports the CUDA_VERSION that the running 

version of CULA was compiled against, which 
indicates the minimum 
version of CUDA that is required to use this library 

culaGetCudaRuntimeVersion() Reports the version of the CUDA runtime that the 
operating system linked against when the program 
was loaded. 

culaGetCudaDriverVersion() Reports the version of the CUDA driver installed 
on the system. 

culaGetCublasMinimumVersion() Reports the CUBLAS_VERSION that the running 
version of CULA was compiled against, which 
indicates the minimum 
version of CUBLAS that is required to use this 
library. 

culaGetCublasRuntimeVersion() Reports the version of the CUBLAS runtime that 
operating system linked against when the program 
was loaded. 

culaGetDeviceCount() Reports the number of GPU devices Can be called 
before culaInitialize(). 

culaGetExecutingDevice() Reports the id of the GPU device executing CULA. 
culaGetDeviceInfo() Prints information to a buffer about a specified 

device. 
culaGetOptimalPitch() Calculates a pitch that is optimal for CULA when 

using the device interface. 
culaDeviceMalloc() Allocates memory on the device in a pitch that is 

optimal for CULA. 
culaDeviceFree() Frees memory that has been allocated with 

culaDeviceMalloc. 
 
 
 
 
 
6  Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures  



 
  

III.  Configuring the Environment: 
The first step in this process is to set up environment variables so that your build scripts 
can infer the location of CULA. Add the following lines to the .bashrc: 
export CULA_ROOT=/usr/local/cula 
export CULA_INC_PATH=$CULA_ROOT/include 
export CULA_LIB_PATH_32=$CULA_ROOT/lib 
export CULA_LIB_PATH_64=$CULA_ROOT/lib64 
(where CULA_ROOT is customized to the location where CULA is installed) 
After setting environment variables, CULA can be built by configuring the build scripts 
(module load culadense) and by using makefile. 
 

III.  CULA Dense Functionalities 
I.  Benchmarking CULA R17 vs Intel MKL on Euler99 (Tesla K40C): 

[pkgupta3@euler99 benchmark]$ ./benchmark 
Initializing CULA... 
Initializing MKL... 
Benchmarking the following functions: 
------------------------------------- 
             SGEQRF 
             SGETRF 
             SGELS 
             SGGLSE 
             SGESV 
             SGESVD 
             SSYEV 
             DGEQRF 
             DGETRF 

DGELS 
             DGGLSE 
             DGESV 
             DGESVD 
             DSYEV 
------------------------------------- 
 
 
     -- SGEQRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.19       0.31    1.6012 
 5120       0.28       0.55    1.9577 
 6144       0.43       0.92    2.1636 
 7168       0.61       1.42    2.3283 
 8192       0.83       2.18    2.6264 
 
     -- SGETRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.12       0.16    1.2944 
 5120       0.19       0.28    1.4750 
 6144       0.27       0.48    1.7634 
 7168       0.39       0.72    1.8318 
8192    0.53       1.10    2.0923 
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     -- SGELS Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.28       0.35    1.2325 
 5120       0.43       0.62    1.4481 
 6144       0.63       1.02    1.6208 
 7168       0.88       1.56    1.7674 
 8192       1.17       2.26    1.9336 
 
     -- SGGLSE Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.31       1.55    5.0503 
 5120       0.48       2.51    5.2651 
 6144       0.69       3.74    5.4573 
 7168       0.94       5.25    5.6026 
 8192       1.24       7.16    5.7733 
     -- SGESV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.13       0.16    1.2737 
 5120       0.20       0.28    1.4250 
 6144       0.29       0.49    1.7278 
 7168       0.41       0.74    1.7983 
 8192       0.55       1.11    2.0338 
 
     -- SGESVD Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096      16.80      26.05    1.5508 
 5120      27.29      43.68    1.6005 
 6144      41.12      67.82    1.6491 
 7168      58.05     113.88    1.9619 
 8192      77.90     171.80    2.2053 
 
     -- SSYEV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       1.70       1.36    0.7978 
 5120       2.67       2.48    0.9272 
 6144       3.97       5.02    1.2641 
 7168       5.62       7.21    1.2819 
 8192       7.51      10.02    1.3341 
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     -- DGEQRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.36       0.68    1.9019 
 5120       0.49       1.06    2.1727 
 6144       0.74       1.86    2.5284 
 7168       1.05       2.74    2.6026 
 8192       1.48       4.85    3.2855 
 
     -- DGETRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.20       0.34    1.6807 
 5120       0.33       0.55    1.6416 
 6144       0.47       1.03    2.1835 
 7168       0.67       1.42    2.1193 
 8192       0.92       3.00    3.2454 
 
     -- DGELS Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.49       0.64    1.3119 
 5120       0.76       1.14    1.4957 
 6144       1.11       1.91    1.7229 
 7168       1.52       2.92    1.9233 
 8192       2.07       4.23    2.0479 
 
     -- DGGLSE Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.53       3.27    6.1585 
 5120       0.79       5.07    6.4347 
 6144       1.15       7.76    6.7629 
 7168       1.57      10.70    6.7944 
 8192       2.13      15.31    7.2020 
 
     -- DGESV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.21       0.36    1.7184 
 5120       0.33       0.56    1.6830 
 6144       0.49       0.97    1.9805 
 7168       0.69       1.43    2.0786 
 8192       0.96       2.97    3.0903 
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     -- DGESVD Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096      22.10      31.46    1.4231 
 5120      37.80      54.24    1.4352 
 6144      58.44      90.94    1.5561 
 7168      86.54     142.55    1.6471 
 8192     122.94     241.05    1.9607 
 
     -- DSYEV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       2.54       3.49    1.3715 
 5120       3.92       5.33    1.3602 
 6144       5.79       8.27    1.4278 
 7168       7.87      11.29    1.4341 
8192   10.60      19.00    1.7922 
8193  

II.  Benchmarking CULA R18 vs Intel MKL on Euler99 (Tesla K40C) 
[pkgupta3@euler99 benchmark]$ ./benchmark 
Initializing CULA... 
Initializing MKL... 
 
Benchmarking the following functions: 
------------------------------------- 
             SGEQRF 
             SGETRF 
             SGELS 
             SGGLSE 
             SGESV 
             SGESVD 
             SSYEV 
             DGEQRF 
             DGETRF 
             DGELS 
             DGGLSE 
             DGESV 
             DGESVD 
             DSYEV 
 
------------------------------------- 
     -- SGEQRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.22       0.37    1.6909 
 5120       0.30       0.69    2.3298 
 6144       0.44       1.20    2.7126 
 7168       0.63       1.73    2.7554 
8192    0.85       2.82    3.3281 
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     -- SGETRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.12       0.23    1.9259 
 5120       0.19       0.43    2.2097 
 6144       0.27       0.81    2.9622 
 7168       0.40       1.05    2.6517 
 8192       0.52       1.35    2.6126 
 
     -- SGELS Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.29       0.53    1.8400 
 5120       0.43       0.62    1.4372 
 6144       0.63       1.03    1.6335 
 7168       0.88       1.56    1.7679 
 8192       1.17       2.26    1.9355 
 
     -- SGGLSE Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.32       1.55    4.8889 
 5120       0.48       2.51    5.1851 
 6144       0.68       3.77    5.5439 
 7168       0.93       5.25    5.6481 
 8192       1.23       7.18    5.8427 
 
     -- SGESV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.12       0.16    1.2847 
 5120       0.19       0.29    1.4710 
 6144       0.28       0.50    1.7773 
 7168       0.39       0.73    1.8581 
 8192       0.53       1.15    2.1701 
 
     -- SGESVD Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096      16.89      25.82    1.5289 
 5120      27.64      44.77    1.6196 
 6144      41.47      68.58    1.6535 
 7168      58.70     117.67    2.0046 
 8192      78.55     177.53    2.2600 
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     -- SSYEV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       1.65       1.42    0.8588 
 5120       2.68       2.49    0.9283 
 6144       4.08       5.06    1.2392 
 7168       5.41       6.97    1.2889 
 8192       7.40      10.10    1.3662 
 
     -- DGEQRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.28       0.69    2.5060 
 5120       0.46       1.05    2.2844 
 6144       0.71       1.89    2.6695 
 7168       1.02       3.30    3.2179 
 8192       1.44       4.86    3.3690 
 
     -- DGETRF Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.20       0.34    1.7257 
 5120       0.32       0.55    1.7093 
 6144       0.49       1.07    2.2083 
 7168       0.67       1.45    2.1595 
 8192       0.94       3.04    3.2488 
 
     -- DGELS Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
4096       0.45       0.65    1.4478 
5120       0.71       1.15    1.6165 
6144       1.06       1.90    1.7986 
7168       1.46       2.93    2.0061 
8192       2.02       4.23    2.0962 
 
     -- DGGLSE Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.47       3.30    7.0021 
 5120       0.74       5.13    6.9317 
 6144       1.09       7.69    7.0707 
 7168       1.51      10.67    7.0741 
8192       2.05      15.26    7.4448 
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     -- DGESV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       0.20       0.34    1.6483 
 5120       0.34       0.56    1.6341 
 6144       0.48       1.08    2.2549 
 7168       0.68       1.46    2.1433 
 8192       0.94       3.09    3.2924 
 
     -- DGESVD Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096      22.23      31.35    1.4104 
 5120      38.00      54.18    1.4257 
 6144      58.57      91.00    1.5537 
 7168      86.57     142.19    1.6425 
 8192     122.97     241.61    1.9649 
 
     -- DSYEV Benchmark  -- 
 
 Size   CULA (s)    MKL (s)   Speedup 
------ ---------- ---------- --------- 
 4096       2.43       3.55    1.4611 
 5120       3.84       5.43    1.4129 
 6144       5.69       8.30    1.4583 
 7168       7.87      11.49    1.4594 
8192   10.30      19.07    1.8512 

 

III.  Implementation with CulaDgesv, CulaSgesv: 

GESV computes the solution to a real system of linear equations A * X = B, where A is 
an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with 
partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a 
permutation matrix, L is unit lower triangular, and U is upper triangular. The factored 
form of A is then used to solve the system of equations A * X = B. 

 
Calling Subroutine: 
culaDeviceSgesv(int n, int nrhs, culaDeviceFloat* a, int lda, culaDeviceInt* ipiv, 
culaDeviceFloat* b, int ldb); 

 
culaDeviceDgesv(int n, int nrhs, culaDeviceDouble* a, int lda, culaDeviceInt* ipiv, 
culaDeviceDouble* b, int ldb); 
where, n: The number of linear equations, i.e., the order of the matrix A. N >= 0. 
Nrhs: The number of right hand sides, i.e., the number of columns of the matrix B. 
NRHS >= 0. 
a: On entry, the N-by-N coefficient matrix A. On exit, the factors L and U from the 
factorization A = P*L*U; the unit diagonal elements of L are not stored. 

lda: The leading dimension of the array A. LDA >= max(1,N). 

ipiv: The pivot indices that define the permutation matrix P; row i of the matrix was 

interchanged with row IPIV(i). 
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             b: On entry, the N-by-NRHS matrix of right hand side matrix B. 

On exit, if culaNoError is returned, the N-by-NRHS solution matrix X. 
ldb:  The leading dimension of the array B. LDB >= max(1,N). 

Note: Results are reported in the Section 4. 

IV.  Implementation with CulaDgetrf, CulaSgetrf: 

GETRF computes an LU factorization of a general M-by-N matrix A using partial 
pivoting with row interchanges. The factorization has the form A = P * L * U where P is a 
permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if 
m > n), and U is upper triangular (upper trapezoidal if m < n). 

 
Calling Subroutine: 
culaDeviceSgetrf(int m, int n, culaDeviceFloat* a, int lda, culaDeviceInt* ipiv); 
culaDeviceDgetrf(int m, int n, culaDeviceDouble* a, int lda, culaDeviceInt* ipiv); 

 
Note: Results are reported in the Section 4. 

 
V. Implementation with CulaSgbtrf, CulaDgbtrf: 

 
GBTRF computes an LU factorization of an m-by-n band matrix A using partial pivoting 
with row interchanges. This is the blocked version of the algorithm, calling Level 3 
BLAS. 

 
Calling subroutine: 
culaDeviceSgbtrf(int m, int n, int kl, int ku, culaDeviceFloat* a, int lda, culaInt* ipiv); 
culaDeviceDgbtrf(int m, int n, int kl, int ku, culaDeviceDouble* a, int lda, culaInt* ipiv); 

where, m: The number of rows of the matrix A. M >= 0. 

  n: The number of columns of the matrix A. N >= 0. 

  kl : The number of subdiagonals within the band of A. KL >= 0. 

  ku: The number of superdiagonals within the band of A. KU >= 0. 
ab: On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL 
of the array need not be set. The j-th column of A is stored in the j-th column of the array 
AB as follows: 
AB(kl+ku+1+i-j,j) = A(i, j) for max(1,j-ku)<=i<=min(m, j+kl) 
On exit, details of the factorization: U is stored as an upper triangular band matrix with 
KL+KU super-diagonals in rows 1 to KL+KU+1, and the multipliers used during the 
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.   
ldab: The leading dimension of the array AB. LDAB >= 2*KL+KU+1. 
Ipiv : The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged 
with row IPIV(i). 

 
Note: Results are reported in the Section 4. 
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4. Results and Analysis: 
 

I.  Timing Scaling Analysis: Timing Scaling Analysis graphs are plotted for GESV, GETRF and 
GBTRF on GeForce GTX680, Tesla C2050 and Tesla K40C with matrix dimensions on x-axis 
and time taken to perform the functionalities in milliseconds on y-axis. The maximum matrix 
dimension is 16000. 

 
Figure1:  Timing Scaling Analysis for DGESV 

 
Figure2:  Timing Scaling Analysis for DGETRF 

 
 

II.  FLOP rate Performance Scaling Analysis: 
Figure3-4 below show the Performance Scaling Analysis of CulaDgesv and CulaSgesv on 
Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards for matrix dimension of 16000. 
It can be observed that as the matrix dimension is increasing, CULA is performing better. 
Overall, Tesla K40C is the better performer for large matrix dimensions because of more GPU 
memory available.  
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Figure3: Performance Scaling Analysis for DGESV 

 
 

 
Figure4: Performance Scaling Analysis for SGESV 

 
The GFLOP performance is measured for double precision and single precision general matrices 
factorization and solve on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum 
matrix dimension of 16000. It is observed that Tesla K40C is the best performer touching around 430 
GFlops for double precision and around 600-700 GFlops for maximum matrix dimension of 16000. 
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Figure5: Performance Scaling Analysis for DGETRF 
 
Figure 5 above shows the GFLOP performance of double precision general matrices triangular factorization 
on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum matrix dimension of 
16000. It is observed that Tesla K40C is the best performer touching around 430 GFlops for matrix 
dimension of 16000. 
 
 
 

 
Figure6: Performance Scaling Analysis for SGETRF 
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Figure 6 above shows the GFLOP performance of single precision general matrices triangular factorization 
on Tesla K40C, Tesla C2050 and GeForce GTX 680 GPU cards, with maximum matrix dimension of 
16000. It is observed that Tesla K40C is the best performer touching around 750 GFlops for matrix 
dimension of 16000. 

 
 

 
 

Figure7: Performance Comparison Analysis of DGBTRF vs SGBTRF on Tesla C2050 (b/w = 1/10) 
 

 

 
 

Figure8: Performance Comparison Analysis of DGBTRF vs SGBTRF on GeForce GTX680 (b/w = 1/10) 
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Figure9: Performance Comparison Analysis of DGBTRF vs SGBTRF on Tesla K40C (b/w = 1/10) 
 
 
Figure 7-9 above show the performance comparison analysis graphs plotted for dense banded triangular 
factorized matrices with maximum dimension of 16000 and bandwidth = 1/10 on all the three GPU cards. 
The performance in terms of GFLOP is much lower for banded matrices factorization as compared to 
general matrices factorization as shown in figure 4-5. 

 
 

 
Figure10: Performance Analysis of DGBTRF with bandwidth = 1/10 
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Figure11: Performance Analysis of GBTRF with different bandwidths 

 

Figure 10-11 above are showing the Performance analysis of banded triangular matrices with bandwidth = 

1/10 on all three GPU cards and performance analysis with respect to different bandwidths on Tesla K40C 

respectively. The main two reasons that are responsible for such behavior are cache access variation with 

changing the bandwidth and synchronization that is managed internally within the subroutine function call.   

 

 

 

 
Figure12: Relative residual Analysis of DGBTRF vs SGBTRF (bandwidth = 1/10) 
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Figure13: Absolute residual Analysis of DGBTRF vs SGBTRF (bandwidth = 1/10) 

 
Figure 12-13 above show the relative and absolute residual comparison analysis of dense banded 
matrices (single and double precision). The relative residual analysis shows the convergence 
residual and it can be interpreted from the above results that double precision functionality has 
much better accuracy relative to the single precision implementation. 

 

5. Conclusion: 
The performance of CULA R17 varies with different GPU cards due to the variation in 
architectural specifications, different GPU memory size and bandwidth. Different linear algebra 
functionalities were illustrated in this report, which are driven by different algorithms. For all these 
functionalities, it was observed that CULA gives a better performance for large matrix dimensions 
and on the device with more GPU memory available. Also, the implementations were optimized by 
pinning the host memory but it was not very helpful. However, the performance remained similar 
as compared to non-pinned memory. Also, the benchmarking results show that CULA R18 
(requires CUDA 6.0) has better speed-ups over MKL as compared to CULA R17. CUDA 6.0 has a 
unified memory which manages optimized memory transfer between host and device. The key is 
that the system automatically migrates data allocated in Unified Memory between host and device 
so that it looks like CPU memory to code running on the CPU, and like GPU memory to code 
running on the GPU. 
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