
ECE 699 – Technical Report

A Basic Profiling and Performance Assessment Utility
for C++ Codes

Praveen Sankaranarayanan

May 2014

	

ii

ABSTRACT

Profiling code is an essential part of software development. It helps the programmer
understand how the code can be expected to perform. Specifically, profiling helps us
identify what regions of the code take the most amount of time and evaluate how
different optimization strategies can be directed towards these time critical regions.
However, profiling large codebases can become unwieldy due to the large amount of
timed data that the programmer has to keep track of and process to better understand
the underlying picture. In order to reduce programmer effort and provide a simpler
interface that helps profile code easier, I have implemented an Application
Programming Interface (API) in C++ that could be imported into any codebase. The
API keeps track of the different timers invoked by the user and provides elegant
reports, which have more information than evident from the timed data. The API has
the ability to keep track of nested timers, which helps one understand how functions
or regions of code nested within a larger code section contribute to the overall timing.
It also provides methods to determine flop rate and bandwidth. The API provides an
ability to compare performance changes between multiple builds of the codebase.
This technical report describes the features of this API with numerous examples and
illustrates how it could be used to profile the Chrono Engine library.

	

iii

Table of Contents

1. INTRODUCTION ... 1

2. FEATURES OF THE PROFILER CLASS ... 2

2.1	CREATING	TIMERS	..	2	

2.2	TRACKING	NESTED	TIMERS	...	3	

2.3	COMPUTING	FLOP	RATE	AND	BANDWIDTH	..	4	

2.4	SUPPORT	FOR	MULTIPLE	TIMING	UTILITIES	..	5	

2.5	GET	A	SPECIFIC	FUNCTION’S	EXECUTION	TIME	...	5	

2.7	COMPARE	MULTIPLE	BUILDS	TO	EVALUATE	OPTIMIZATIONS	..	7	

2.8	ERROR	MESSAGES	..	7	

2.9	RESET	TIMER	DATA	..	8	

3. OUTPUT REPORTS .. 8

3.1	HIERARCHY	REPORT	...	8	

3.2	CONCISE	REPORT	...	11	

3.3	PRINTING	HIERARCHY	OF	NESTED	TIMERS	TO	FILE	..	12	

3.4	COMPARISON	REPORT	..	13	

4. PROFILING CHRONO ... 14

5. FUTURE WORK .. 15

6. CONCLUSION .. 16

	

	

1

1. INTRODUCTION

While it is absolutely essential to profile any large codebase, very little effort has been
taken to make the job of the programmer easier. In a typical scenario, the user has to
wrap the regions of code that he wishes to time with multiple function calls depending
on the timers that are used. For instance, if the programmer wishes to use Linux’s
gettimeofday() function to time a certain section of code, he has to declare an object
of the structure this function takes as an argument. The user then wraps the region of
code with calls to gettimeofday() with the appropriate arguments passed. The elapsed
time is finally determined by doing arithmetic calculations on certain members of the
structure. To further complicate this process, it is not very easy to remember the
syntax of these timing functions, which would indeed require a quick Google search.
While doing all these steps might seem viable for a small number of timers, it
becomes infeasible with large codebases which require functions to be timed in
multiple files.

The primary motivation behind this project was to reduce the amount of effort that the
programmer has to put in to profile code, thereby letting him concentrate better on
implementing functionality. The idea was to develop an API that could be used as a
utility to profile code and which could be easily imported into any codebase by
including the necessary header files. The API is built in C++ and greatly simplifies
profiling through numerous functions that could be invoked as needed to time
different regions of code. Instead of the steps listed in the gettimeofday() example, the
user just has to wrap the regions of interest with appropriate function calls from the
API, which are as simple as start(<timer_name>) and stop(<timer_name>). The API
provides numerous parameters like execution time, flop rate, bandwidth and
performance improvement.

The remainder of the technical report is organized as follows:

 Section 2 describes the features of the Profiler class, particularly highlighting
the ability to track nested timers, the support for different timing utilities and
the ability to compare performance changes between two independent runs of
the program. Detailed documentation with examples is provided, explaining
how to invoke each function of the class

 Section 3 describes the three different kinds of reports that can be generated –
a tree hierarchy, a concise report and a comparison report

 Section 4 illustrates how this API can be used to profile the Chrono Library
 Section 5 describes how this work can be extended in the future
 Section 6 provides a summary of the project and conclusion

	

2

2. Features of the Profiler Class

All the features of the profiling API are implemented as functions of a C++ class
called Profiler. This section describes the features of the Profiler class and describes
how different functions can be used. While the report provides numerous examples to
illustrate the features of the class, it also serves as a documentation that could be
referred by anyone who wishes to use this library to profile code.

2.1 Creating Timers

The greatest simplification that the Profiler class provides is that it eliminates the
need to create a separate object of the timer class for each timer that the user wishes to
create. All the functions in the class can be invoked using a single instance of the
Profiler class. The ability to use the same object to invoke multiple timers reduces the
programmer effort to remember the different objects that he created to time each
section of code. Starting and stopping timers is as simple as the code snippet shown in
Fig 1. timer_obj is an object of the Profiler class.

 Fig. 1: Starting and stopping timers

start
Start a timer with the specified timer name. If the timer does not exist, the timer is
created.

void start(string timerName)

Parameters:

timerName – Name of the timer that the user wishes to create or start. Could be any
valid string.

stop
Stop the timer with the specified timer name.

void stop(string timerName)

Parameters:

timerName – Name of the timer that the user wishes to stop. Could be any valid string.

Errors: Timer does not exist.

	

3

2.2 Tracking Nested Timers

The Profiler class provides the ability to keep track of timers that are nested. This is a
very useful functionality as it provides information to the programmer about the
contribution of the execution time of the nested timers to a certain parent timer. The
class provides information about the percentage of time of a given parent that was not
accounted for by its children. This helps the user identify regions of code within a
certain function that could have contributed a significant overhead but had been
overlooked while timing. Consider the programming scenario in Fig 2.

Fig. 2: Typical programming scenario illustrating nested timers

In the example shown above, the main function “A” has the timers “B” and “D”
nested within it, which in turn have multiple timers nested within them. Given the fact
that such scenarios are pretty common in software development, it would become
cumbersome if the programmer has to individually invoke separate timer objects for
each function he wishes to time. Further, tracking which timers are nested and how
much they contributed to their parent would not be possible. The Profiler class
automatically keeps track of such data and provides an elegant report that lists the
hierarchy of the timers in the form of a tree structure. It also provides the fraction of
time that was accounted for by the children to the overall execution time of the parent.
The greatest advantage of this functionality is that the programmer does not have to
do anything special to track such nested timers. All that the programmer has to do is
wrap start() and stop() calls around the regions he wishes to time, and the class
automatically keeps track of different levels of nesting! This is illustrated later with a
code snippet in section 3.

	

4

2.3 Computing Flop Rate and Bandwidth

The Profiler class also provides the ability to determine the flop rate and bandwidth
of a certain function or region of code. This is achieved using two functions namely
setFlop() and setMemory(). The user has to provide the number of floating-point
operations or the number of memory transactions within the region of interest to these
functions to determine the flop rate and bandwidth. Determining the number of
floating-point operations is difficult as this is very much dependent on the Instruction
Set Architecture (ISA). The user can hence provide an estimated value to determine
the flop rate. Determining the number of memory transactions is relatively simpler as
this just involves counting the number of loads and stores within the function.

setFlop
Compute the flop rate of the specified timer with the given number of floating-point
operations.

void setFlop(string timerName,

double f)

Parameters:

timerName – Name of the timer for which the flop rate is to be computed.
f – Number of floating-point operations for the specified timer.

Errors: Timer does not exist

setMemory
Compute the bandwidth of the specified timer with the given number of memory
operations.

void setMemory(string timerName,

 double m)

Parameters:

timerName – Name of the timer for which the bandwidth is to be computed.
m – Number of memory operations for the specified timer.

Errors: Timer does not exist

The code snippet in Fig. 3 shows how these functions can be invoked.

Fig. 3: Computing flop rate and bandwidth

	

5

2.4 Support for multiple timing utilities

In certain situations, the programmer may wish to switch between multiple timing
utilities for better accuracy and precision. For instance, some users might prefer using
gettimeofday() while some others might prefer using the OpenMP timer available as
part of the GCC Compiler. The Profiler class provides the ability to choose the timer
of our choice by just specifying the desired timer as a constructor argument while
creating an object of the Profiler class. The class has support for Linux’s
gettimeofday(), Windows’ QueryPerformanceCounter(), OpenMP timer and also the
conventional system timer clock(). Fig. 4 shows how one of these four timers can be
selected while creating the object.

 Fig. 4: Choosing one of the four available timers

2.5 Get a specific function’s execution time

The class provides the ability to retrieve the execution time of any function using the
getTime() method. The time can be retrieved in either milliseconds or seconds.

getTime

Get the execution time of the specified timer in seconds or milliseconds.

double getTime(string timerName,

 string unit)

Parameters:

timerName – Name of the timer whose time needs to be retrieved.

unit – Should be either “sec” or “ms” to retrieve time in seconds and milliseconds
respectively.

Errors: If the timer does not exist, the function returns -1.

	

6

2.6 Support for Interleaved Timers

The class provides the ability to interleave timers by letting the user specify which
timer should be the parent of the newly created timer. This might be useful in
scenarios in which the user does not wish to automatically nest timers but instead
wants a timer to be placed at a different level of the hierarchy. This interleaving is
achieved using an overloaded start() function that takes two arguments.

start

Start a timer by placing it under the user specified parent.

void start(string timerName,

 string parent)

Parameters:

timerName – Name of the timer to create or start.

parent – The name of the parent under which the newly created timer has to be placed.
If parent is empty (i.e. “”), the newly created timer is placed at the same level as the
root (i.e. it has no parent).

Error: Parent timer does not exist.

Fig. 5 shows how interleaved timers could be created, with the interleaving between
the timers depicted.

Fig. 5: Interleaved Timers

	

7

2.7 Compare multiple builds to evaluate optimizations

At times, the user might do some changes to the code to optimize a certain portion.
But this optimization effort might not always have a positive impact on the program.
To better evaluate the effects of introducing optimizations, the class provides the
ability to compare two different runs of the codebase. It provides information that lets
the user know if the optimization had a positive or negative impact on performance.
The user can dump the reference data of the run which serves as the base benchmark
to a reference file using the dumpReference() function described below. The user can
then generate a comparison report using the comparisonReport() function, which is
described in section 3.4.

dumpReference

Dump reference data to a file for comparison with future runs of the program. Dumps
the average execution time, average flop rate and average bandwidth for each timer.
Average values are used to overcome the impact of varying number of iterations for
each timer between two independent runs of the program.

void	dumpReference(string	file)	

Parameters:	

file	–	Name	of	the	file	to	which	the	reference	data	has	to	be	dumped.	

The following snippet shows how this function can be invoked to dump reference data
to a file.

	

2.8 Error Messages

The class provides certain error messages that help the user avoid common errors.
Some of the possible error conditions are:

 Stopping an undefined timer (i.e. a timer that does not exist)
 Requesting timing data for an undefined timer
 Passing an undefined timer as an argument to any of the report generating

functions
 Unable to find reference data in the reference file for a certain timer. This

could happen if the second run of the program has a timer that was not
included in the base run, and hence is not found in the reference file.

There are times at which the error messages can clutter the output reports. To avoid
this, the class provides the ability to turn off error messages using the debug flag.

Error messages are ON by default.

	

8

2.9 Reset timer data

It might be useful in certain scenarios to reset the data of all timers. For instance, the
program could involve multiple time steps, each of which could invoke all the timers.
In that case, it would make sense to reset all the timers between two successive steps.
The reset() function resets all the parameters i.e. execution time, number of floating-
point operations, number of memory operations, flop rate and bandwidth. The
function does not take any argument and can be invoked as follows.

3. Output Reports

The greatest advantage of the Profiler API is that it provides elegant reports that
consolidate the data from all the timers. The class has the ability to print three
different kinds of reports. Each of these reports provides the execution time, flop rate,
bandwidth and percentage of time accounted by nested timers. The three reports are:

 A detailed report that depicts the hierarchy of the nested timers using a tree
structure

 A concise report that prints all relevant data as a table to either the standard
output or a file

 A comparison report that prints a performance comparison between multiple
runs of the program.

The class also has the ability to print the nested timers’ hierarchy to a file. This
section describes how each of these reports could be generated using numerous
examples.

3.1 Hierarchy report

The hierarchy of the nested timers can be printed using the printReport() function.

printReport

Prints the hierarchy of the nested timers under the specified timer to standard output.

void printReport(string timerName)

Parameters:

timerName – Name of the timer whose nested timer hierarchy is to be printed.

There is also an overloaded function with the same name that takes no argument. This
function prints the complete hierarchy of all the timers in the program.

Errors: Timer does not exist.

Fig. 6 shows how this function can be invoked.

	

9

Fig. 6: Invoking the printReport() function

Consider the following example.

Fig. 7: Example to demonstrate nested timers

	

10

Outputs

Fig. 8: Output for obj.printReport()

Fig. 9: Output for obj.printReport(“A”)

Fig. 10: Output for obj.printReport(“B”)

	

11

3.2 Concise Report

A concise report in the form of a table can be printed to standard output or a file using
the printConcise() function.

printConcise

Prints a concise report to the standard output or the specified file. The report includes
the specified timer and its nested timers.

void printConcise(string timerName,

 string file)

Parameters:

timerName – Name of the timer whose data is to be printed. An empty timerName
(i.e. “”) prints the complete report for all timers.

file – Name of the file to which the report has to be generated. Specifying file as
“STDOUT” prints the concise report to the standard output.

Error: Timer does not exist.

Fig. 11 shows how this function can be invoked.

Fig. 11: Invoking the printConcise() function

Using the same example shown in Fig. 7, the output for the three function calls in
Fig. 11 would be as shown below.

Fig. 12: Contents of file ‘report.txt’

	

12

Fig. 13: Contents printed in standard output for obj.printConcise(“B”,”STDOUT”)

3.3 Printing hierarchy of nested timers to file

If the user wishes to see the nested hierarchy of timers along with the concise report
in a file, the printNestedTimers() function can be used.

printNestedTimers

Prints the hierarchy of the nested timers under the specified timer to either the
standard output or specified file.

void printNestedTimers(string timerName,

 string file)

Parameters:

timerName – Name of the timer whose nested timers have to be printed to file. An
empty timerName (i.e. “”) prints the complete hierarchy of all timers.

file – Name of the file to which the hierarchy is to be printed. Specifying file as
“STDOUT” prints the hierarchy to the standard output.

Errors: Timer does not exist.

 Fig. 14: Printing the nested timers to a file before printing a concise report

Considering the same example shown in Fig. 7, the output for the above snippet
would look as shown below.

Fig. 15: Contents of file ‘nest.txt’

	

13

3.4 Comparison Report

As stated before, the class has the ability to provide a report that compares two
different runs of the program. This report can be generated using the
comparisonReport() function. The reference file for comparison should be dumped
using the dumpReference() function as explained in section 2.7.

comparisonReport

Prints a comparison report for the specified timer and its nested timers to either the
standard output or given file.

void comparisonReport(string timerName,

 string newFile,

 string refFile)

Parameters:

timerName – Name of the timer whose data has to be compared and printed. An
empty timerName (i.e. “”) prints the complete report showing comparison for all
timers.

newFile – The file to which the comparison report is to be printed. Specifying file as
“STDOUT” prints the report to the standard output.

refFile – The reference file which has the data for comparison. This file is generated
using the dumpReference() function.

Errors:

 Timer does not exist
 Reference file does not exist
 Unable to find reference data for a certain timer in reference file.

For the example shown in Fig. 7, the duration of each timer’s sleep was changed as
shown in the table below.

Timer Name Initial Run Second Run
A 7s 6s
B 3s 4s
C 1s 3s
D 3s 1s
Head 8s 8s

 Table 1: Changes introduced between two runs for example of Fig. 7

The initial run should have the following line:

	

14

The second run of the program should have the following line to generate the
comparison report. The reference file for comparison is ‘ref.txt’

The output report appears as shown in Fig. 16.

Fig. 16: Contents of file ‘comparison.txt’

As shown in the report, the class provides the percentage change in the execution time,
flop rate and bandwidth between two different runs of the program. If the flop rate or
bandwidth is not computed, the field has the value N/A (Not Available).

4. Profiling Chrono

 The API was used to profile the Chrono::Parallel library developed at SBEL. The
following hierarchical report was generated by timing several functions in a step.

Fig. 17: Nested timing report generated by profiling Chrono Library

	

15

An interesting observation from Fig. 17 is that the shurA and shurB functions
accounted only for 36.20 % of the lcp solver function. This provides the programmer
with the useful information that there might be some other time critical function or
region of code within lcp solver that was overlooked while profiling. This highlights
the advantage of tracking nested timers. The concise report generated for two steps is
shown in Fig. 18. The complete hierarchy of all the nested timers is also printed to the
file.

Fig. 18: Concise Report generated by profiling Chrono Library

5. Future Work

This work has a lot of potential to be improved in the future. The API currently has
the ability to compare two independent runs of the program. This could be extended
to compare multiple runs by dumping the data of each run to the reference file and
retrieving the appropriate run that the user wishes to compare. The class can also be
extended to include the ability to time GPU kernels. This would require adding
support for CUDA events and CUDA timers. As CUDA kernel calls are asynchronous,
timing them using just the start() and stop() functions would be a challenging but
extremely useful functionality to implement.

	

16

6. Conclusion

This technical report described an API that was developed to help programmers
profile code more easily. The features of the Profiler class were explained. It was
observed that the API greatly simplifies the effort needed by the programmer to track
the different timing data and provides useful methods to print elegant reports. The
ability to track nested timers provides an added advantage to better analyze code. The
functionality to compare performance between independent runs of the program helps
the programmer evaluate how different optimization strategies perform. Overall, this
API turns out to be a valuable addition to anyone who wishes to profile code with
minimal effort.

