
Simulation-Based Engineering Lab
University of Wisconsin-Madison

Technical Report TR–2017–09

Overview of the Chrono ADAMS Parser

Conlain Kelly and Radu Serban

Dept. of Mechanical Engineering, University of Wisconsin – Madison

January 18, 2018

1 Introduction

This report presents a brief overview of the Chrono [1] functionality for parsing MSC ADAMS
[2] adm input files. It also includes a basic usage guide with code examples. The parser
currently recognizes the following ADAMS structures:

• PART (a body and corresponding properties)

• MARKER (reference frame that JOINTS attach to)

• JOINT (a kinematic constraint between two MARKERS)

• ACCGRAV (the direction and magnitude of gravity)

• GRAPHICS (visualization assets attached to a marker)

The following are matched and then ignored:

• REQUEST (controls what variables are output)

• UNITS (sets simulation units)

• OUTPUT (controls output file generation)

There are many other ADAMS objects that the parser completely ignores, but those that
are interpreted and converted comprise a large subset of the ADAMS functionality.

2 Background

MSC Adams (Automatic Dynamic Analysis of Mechanical Systems) [2] is a proprietary
multibody dynamics software used to design and model mechanical systems.

For 3-D multibody system modeling, ADAMS employs a Cartesian (i.e., maximal coor-
dinate) formulation, similar to the one used in Chrono. The main difference between the two
is the representation of 3-D rotations: Chrono relies on unit quaternions (four parameters
with a normalization constraint), ADAMS uses Euler angles (three independent parameters).
Both packages offer exhaustive libraries of kinematic joints and force elements.

Modeling and simulation with ADAMS is usually done through its integrated ADAMS/View
GUI. Nonetheless, the interface between the ADAMS modeling module and its simulation
module (ADAMS/Solver) is intermediated through so-called adm files which are ASCII text
files with a proprietary format. Commands for controlling the simulation (such as integra-
tor tolerances and maximum step-size, final simulation time and output frequency, type of
output, etc.) are provides separately, into a so-called acf file. Examples of adm and acf files
are provided in Appendix A.

ADAMS provides a simple grammar for specifying mathematical functions and refer-
ring to states of the underlying system. Such expressions are entered directly in the ADAMS

1

dataset (the adm file) using a FORTRAN-like syntax. Note that, for uniformity, ADAMS/View
generates function expression even for the simplest modeling elements. For example, the
following snippet from an adm file represents a linear spring-damper force element:

1 ! adams_view_name='SPRING_1.sforce'
2 SFORCE/1
3 , TRANSLATIONAL
4 , I = 204
5 , J = 205
6 , FUNCTION = − 100.0∗(dm(204,205)−2.0)
7 , − 1.0∗vr(204,205)
8 , + 0.0
9 !

10 ! adams_view_name='SPRING_1.deformation'
11 VARIABLE/1
12 , FUNCTION = DM(204,205) − 2.0
13 !
14 ! adams_view_name='SPRING_1.deformation_velocity'
15 VARIABLE/2
16 , FUNCTION = VR(204,205)
17 !
18 ! adams_view_name='SPRING_1.force'
19 VARIABLE/3
20 , FUNCTION = (DX(204,205)∗FX(204,205) +
21 , DY(204,205)∗FY(204,205) +
22 , DZ(204,205)∗FZ(204,205))/
23 , DM(204,205)

Parsing an adm file thus requires a lexical analyzer generator.

3 Implementation

The parser makes three passes to parse an adm file. A first pass is done over the adm file to
parse it into a list of tokens. A second pass runs over the set of tokens and compiles them into
a set of c++ data structures for each. The final pass then converts these c++ representations
into Chrono objects. This 3-pass structure is necessary since ADM files don’t necessarily
specify objects in a useful order (markers can be declared before their corresponding parts).

The first pass uses FLEX [3] to generate a tokenizer to parse the adm file. A .lex file
specifies regex patterns and a corresponding line of C++ to run if a match occurs. For
example, when the tokenizer encounters the token MARKER, it will flag that token as a match
for a ChMarker and add a <token, arguments> pair to a list of such tokens.

The second pass runs over the token stream and determines what kind of Chrono object is
needed. The stream consists sets of primary tokens (tokens corresponding to some object like
a PART) and corresponding attribute tokens. For example, the parser will see that a MARKER
token was detected and will read the following tokens to extract relevant properties, such as
position, orientation, and attached part. In this fashion, it creates lists of parts, markers,
joints, and visualization assets, represented as the C++ structures in Listing 1.

The third pass runs through these lists and constructs, in order, the corresponding
ChBodys, ChMarkers, ChLinks, and ChAssets. This ordering is necessary to ensure that the
proper ChBodys and ChMarkers exist before the joints that reference them are created. This
way, each Chrono object can be created, initialized, and added to the containing system in
one pass.

2

Listing 1: Intermediate objects

1 struct adams_part_struct {
2 bool f i x e d ; // Fixed to ground
3 double mass ; // Part mass
4 s t d : : s t r i n g cm_marker_id ; // COM marker
5 double l o c [3] ; // Location of part in global frame
6 double r o t [3] ; // Orientation of part in global frame
7 double i n e r t i a [6] ; // Moments of inertia
8 } ;
9 struct adams_joint_struct {

10 std : : s t r i n g type ; // REVOLUTE , TRANSLATIONAL , etc.
11 std : : s t r i n g marker_I ; // First constrained marker
12 std : : s t r i n g marker_J ; // Second constrained marker
13 } ;
14 struct adams_marker_struct {
15 std : : s t r i n g part_id ; // Attached part
16 double l o c [3] ; // Location relative to part
17 double ro t [3] ; // Orientation relative to part
18 } ;

3.1 Report

The ChParserADAMS::Report class provides an interface for the user to access bodies, joints,
and forces parsed from the .adm file. A report object is created during parsing to store,
in maps hashed by the element name, the lists of Chrono bodies, joints, and loads. The
relevant data structures are shown in Listing 4. The ChParserADAMS::Report provides
methods for printing the report and for accessing bodies, joints, and loads by their name.
Additionally, it provides an interface for users to modify bodies and joints loaded into the
system, primarily to add visualization and collision assets. The report for a parser can be
accessed via ChParserADAMS::GetReport().

3.2 Visualization

The parser currently reads in 3 visualization assets from the adm file: BOX, CYLINDER, and
ELLIPSOID. These are only loaded into the system if the parser’s m_visType flag is set to
true. The given visType structure provides the ability to add a new visualization technique
if so desired. Additionally visualization assets can be added to parsed bodies by accessing
those bodies via the Report class.

3

Listing 2: ChParserADAMS::Report class

1 /// Report containing information about objects parsed from file
2 class ChApi Report {
3 public :
4 /// Information about a joint read in from ADAMS.
5 struct J o i n t I n f o {
6 std : : s t r i n g type ; ///< joint type as shown in adm file
7 std : : shared_ptr<ChLink> j o i n t ; ///< Chrono link (joint)
8 } ;
9 /// list of body information

10 std : : unordered_map<std : : s t r i ng , std : : shared_ptr<ChBodyAuxRef>> bod ie s ;
11 /// list of joint information
12 std : : unordered_map<std : : s t r i ng , Jo in t In fo > j o i n t s ;
13 . . .

Listing 3: ChParserAdams usage example

1 std : : s t r i n g f i l ename = "adams/test_Revolute_Case01.adm" ;
2 // Make a system
3 ChSystemSMC my_system ;
4

5 // Create parser instance and set options.
6 ChParserAdams p a r s e r ;
7 par s e r . SetVi sua l i za t ionType (ChParserAdams : : VisType : :LOADED) ;
8 par s e r . SetVerbose (true) ;
9 par s e r . Parse (my_system , f i l ename) ;

3.3 Collision and Contact

Currently all bodies are set as non-collision objects. However, bodies can be accessed via
the Report class (see §3.1), providing the user with an interface to add collision models to
bodies after the parser has run.

3.4 Sample Usage

An example of parsing an adm file to populate an existing Chrono system is as shown in
Listing 3.

The usage pattern is:
1. create parser object;
2. set parsing options;
3. invoke one of the Parse methods.

For a complete example of using the ADAMS to Chrono parser, see the demo_IRR_Adams_parser

4

~\\II///
gcHRONO .,.
~Ill\\

Figure 1: Snapshot from a Chrono simulation of a parsed ADAMS model. The visualization mode
was set to LOADED.

Listing 4: ChParserAdams::Report Output from demo_IRR_Adams_parser

1 Parsed 2 bod ie s :
2 name : "01"
3 name : "02"
4 Parsed 1 j o i n t s :
5 name : "1" , type : "REVOLUTE"

demonstration program available with the Chrono distribution [4]. A snapshot from the simu-
lation of this translated model is shown in Fig. 1. The output from ChParserADAMS::PrintReport()
is provided in Listing 4.

3.5 Current Limitations

• No collision models are read or created at parse-time.

• Unrecognized joints (ADAMS joints outside those implemented in the parser) are
flagged with a warning to stderr but then ignored.

• ADAMS generalized constraints (GCONs) are ignored and must be user-implemented.

5

A ADAMS acf and adm file samples

Listing 5: ADAMS acf file example
1 test_Revolute_Case01 .adm
2 test_Revolute_Case01_ADAMS
3 output/noseparator
4 integrator/gstiff , &
5 error = 1.0e−4, hmax=1e−5
6 simulate/transient , &
7 end=5.0, dtout=1.0E−002
8 stop

Listing 6: ADAMS adm file for a simple pendulum system
1 ADAMS/View model name: test_Revolute_Case01
2 !
3 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SYSTEM UNITS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 !
5 UNITS/
6 , FORCE = NEWTON
7 , MASS = KILOGRAM
8 , LENGTH = METER
9 , TIME = SECOND

10 !
11 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PARTS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 !
13 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ground −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 PART/01, GROUND
15 ! World Coordinate System Marker
16 MARKER/0101, PART = 01
17 ! Revolute Joint Attachment Marker
18 ! (−90 deg rotation about the X axis)
19 MARKER/0102, PART = 01
20 , QP = 0, 0, 0
21 , REULER = 180D, 90D, 180D
22 !
23 !
24 ! Joint Geometry
25 MARKER/0103, PART = 01
26 , QP = 0, −.4, 0
27 , REULER = 180D, 90D, 180D
28 !
29 GRAPHICS/0101
30 , CYLINDER
31 , CM = 0103
32 , LENGTH = .8
33 , RADIUS = 0.05
34 !
35 !
36 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Pedulum −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 !
38 PART/02, MASS = 1
39 , CM = 0201, IP = 0.04, 0.1 , 0.1
40 !
41 ! Pedulum Center Marker
42 ! (−90 deg rotation about the X axis)
43 MARKER/0201, PART = 02
44 , QP = 2, 0, 0
45 , REULER = 180D, 90D, 180D
46 !
47 ! Pedulum Revolute Joint Attachment Marker
48 ! (−90 deg rotation about the X axis)
49 MARKER/0202, PART = 02
50 , QP = 0, 0, 0
51 , REULER = 180D, 90D, 180D
52 !
53 ! Draw Geometry
54 ! Main Pendulum Body
55 ! (Point Z axis along original x axis)
56 MARKER/0203, PART = 02
57 , QP = 0, 0, 0
58 , REULER = 90D, 90D, 0
59 !
60 GRAPHICS/0201
61 , CYLINDER
62 , CM = 0203
63 , LENGTH = 4
64 , RADIUS = 0.1
65 !
66 ! Joint Cylinder
67 MARKER/0204, PART = 02

6

68 , QP = 0, −.2, 0
69 , REULER = 180D, 90D, 180D
70 !
71 GRAPHICS/0202
72 , CYLINDER
73 , CM = 0204
74 , LENGTH = .4
75 , RADIUS = 0.1
76 !
77 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CONSTRAINTS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 !
79 ! Pendulum Revolute Joint
80 JOINT/1, REVOLUTE
81 , I = 0102, J = 0202
82 !
83 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DATA STRUCTURES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 !
85 !
86 !−−−−−−−−−−−−−−−−−−−−−−−−− GRAVITATIONAL ACCELERATION−−−−−−−−−−−−−−−−−−−−−−−−−−
87 !
88 ACCGRAV/
89 , KGRAV = −9.80665
90 !
91 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− OUTPUT REQUESTS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 !
93 REQUEST/01, D, I=0201,J=0101,C=DISPLACEMENT: X Y Z PSI THETA PHI (body−fixed−3−1−3)
94 REQUEST/02, V, I=0201,J=0101,C=VELOCITY X Y Z WXWYWZ
95 REQUEST/03, A, I=0201,J=0101,C=ACCELERATION X Y Z WDXWDYWDZ
96 REQUEST/04, F2=ORIENT(27,1,0201,0101)\F3=ORIENT(27,2,0201,0101)\F4=ORIENT(27,3,0201,0101)\F6=ORIENT(27,4,0201,0101) ,C=EULER

,→ PARAMETERS
97 REQUEST/05, F2=JOINT(1 ,0 ,2 ,0)\F3=JOINT(1 ,0 ,3 ,0)\F4=JOINT(1 ,0 ,4 ,0)\F6=JOINT(1 ,0 ,6 ,0)\F7=JOINT(1 ,0 ,7 ,0)\F8=JOINT(1 ,0 ,8 ,0) ,C=RForce X

,→ Y Z RTorque X Y Z
98 !
99 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ANALYSIS SETTINGS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 !
101 OUTPUT/
102 , REQSAVE
103 ! , GRSAVE
104 !
105 !RESULTS/
106 ! , XRF
107 !
108 END

B ChParserAdams documentation

We list here some of the more important functions in the ChParserAdams class. For more
details, see the Project Chrono API documentation [5].

Parse the specified ADAMS input file and create the model in the given system.
1 void chrono : : u t i l s : : ChParserAdams : : Parse (
2 ChSystem& system ,
3 const std : : s t r i n g& f i l ename
4)

Arguments:
system containing Chrono system
filename adm input file name

7

1

1

1

Parse the specified ADAMS input file and create the model in a new system. Note that the
created system is not deleted in the parser’s destructor; rather, ownership is transferred to
the caller.

1 ChSystem∗ chrono : : u t i l s : : ChParserAdams : : Parse (
2 const std : : s t r i n g& f i l ename ,
3 ChMater ia lSurface : : ContactMethod method = ChMater ia lSurface : : NSC
4)

Arguments:
filename adm input file name
method contact method (NSC: non-smooth, complementarity-based; SMC: smooth,

penalty-based)

Set body visualization type.
void SetVi sua l i za t ionType (VisType va l)

Arguments:
val visualization mode (default: NONE)
The visualization mode can be one of:
LOADED use visualization assets loaded from the adm file (currently limited to BOX,

ELLIPSOID, or CYLINDER)
NONE no visualization

Obtain a reference to the parser’s report object.
const Report& GetReport () const

Arguments: N/A

Print parser report to stdout.
void PrintReport () const

Arguments: N/A

References

[1] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor,
H. Sugiyama, and D. Negrut. Chrono: An open source multi-physics dynamics engine. In

8

T. Kozubek, editor, High Performance Computing in Science and Engineering – Lecture
Notes in Computer Science, pages 19–49. Springer, 2016.

[2] MSC Software. ADAMS. http://www.mscsoftware.com/product/adams. Accessed:
2015-02-07.

[3] Will Estes. FLEX: The Fast Lexical Analyzer - scanner generator for lexing in C and
C++. https://github.com/westes/flex. Accessed: 2018-01-03.

[4] Project Chrono Development Team. Chrono: An Open Source Framework for the Physics-
Based Simulation of Dynamic Systems. https://github.com/projectchrono/chrono.
Accessed: 2017-05-07.

[5] Project Chrono. ProjectChrono API Web Page. http://api.projectchrono.org/. Ac-
cessed: 2017-10-20.

9

http://www.mscsoftware.com/product/adams
https://github.com/westes/flex
https://github.com/projectchrono/chrono
http://api.projectchrono.org/

	Introduction
	Background
	Implementation
	Report
	Visualization
	Collision and Contact
	Sample Usage
	Current Limitations

	ADAMS acf and adm file samples
	ChParserAdams documentation

